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Abstract. The phase behavior of aqueous solutions of temperature-responsive (ethylene oxide)/ethylene copolymers with
tunable lower critical solution temperatures (LCST) is explored using an equation of state approach. The LCST in water of
these polymers is tailored by their chemical composition, specifically by the balance of hydrophilic to hydrophobic groups in
the polymer. The general formalism of the lattice-fluid with hydrogen-bonding theory, adjusted here to account for multiple
types of hydrogen bonds, is employed, and the theoretical predictions are compared with experimental systems. The developed
theoretical model is shown to be effective in describing the phase behavior of these systems, and the model parameters seem
to be transferable between different homologous copolymer series.
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INTRODUCTION

Aqueous polymer solutions are abundant in nature and also important from a technological viewpoint, but, at the same
time, represent systems whose theoretical description is rather challenging. These challenges arise from the fact that
systems of molecules interacting with strong specific hydrogen-bonding interactions deviate remarkably from normal
solution behavior [1, 2, 3, 4]. One such a deviation is the existence of a lower critical solution temperature (LCST),
above which the polymer becomes insoluble in water. Poly(ethylene oxide) (PEO) is probably the most investigated
water-soluble synthetic polymer with an LCST, including considerable theoretical attention in recent years for water
solutions [5, 6, e.g.] and in 1 nm confinements [7, 8, 9, e.g.]. Its LCST, associated with its hydrogen-bonding to water,
occurs at T≥100 ◦C, i.e., above the boiling point of water, thus limiting its use for applications requiring a temperature-
response. However, it has been shown that the LCST of water-soluble polymer can be decreased by proper addition
of hydrophobic segments to the polymer [10, 11], as long as hydrophilic and hydrophobic segments are not lumped
together in extended blocks (such a blockiness would facilitates micellar type of aggregates/collapse [12, 13] rather
than a ‘normal’ coil-to-globule transition [14]).

In this work1 , we will focus on this last type of oligo-ethylene-oxide/oligo-ethylene linear alternating copolymers,
which exhibit LCST transitions tailored at varied temperatures (from 7 to 80 ◦C) via the copolymer composition
[11]. Specifically, focusing on these polymers, we describe their phase behavior by an established equation of state
theoretical framework, the lattice-fluid with hydrogen-bonding (LFHB) [4].

THEORETICAL MODEL AND RESULTS

From an Equation-of-State theoretical viewpoint, one can treat van der Waals (physical) interactions with the well-
established Sanchez-Lacombe compressible lattice-fluid (LF) model [1, 2], combined with the chemical association
approach [3] to account for hydrogen-bonding (chemical interactions). Such a model was proposed by Panayiotou
and Sanchez –known as the lattice-fluid with hydrogen-bonding (LFHB) theory [4]– where the chemical (hydrogen-
bonding) contributions are treated through an enumeration of pair interactions between various hydrogen-bonding
donor and acceptor groups. Namely, the chemical contributions of LFHB are based on the combinatorial expression
for the number of ways of forming hydrogen bonds. The basic approximation of the model is that physical (van der
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Waals) and chemical (hydrogen-bonding) forces are effectively decoupled, i.e., the canonical partition function can
be factored as Q = QLFQHB so that QLF disregards the existence of hydrogen bonds and considers only physical
intermolecular interactions, while QHB accounts only the hydrogen bonding.
Nomenclature: We define our system to contain Nk molecules of k-th type, at temperature T and external pressure P.
There are m types of proton-donor groups and n types of proton-acceptor groups, with di

k being the number of donor
groups of i-th type in each molecule of k-th type and, equivalently, aj

k number of j-th type acceptor groups in each
k-th type molecule.
Lattice-Fluid. For the lattice-fluid theory, molecules are arranged on a quasi-lattice of Nr sites, N0 of which are
empty. Each molecule of k-th type is divided into rk segments of close-packed volume v∗k in the pure state and average
(mean-field) interaction energy ε∗k . The following combining and mixing rules are assumed
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where xk are the mole fractions, φk are the segment fractions (defined as φk = xkrk/r), and θk are the surface fractions
(defined as θk = φksk/∑t

l=1 φlsl , where sk is the average number of contacts per k-th segment, equivalent to a surface
to volume ratio of that segment). A Berthelot-type combining rule is adopted for εkl (ξkl is a dimensionless parameter,
expected to have values close to unity). The total lattice-fluid volume of the system is given by VLF = Nrv∗ = rNv∗ṽ,
where the reduced volume (ṽ = 1/ρ̃) is defined of the basis of the reduced density (ρ̃ = rN/Nr). Similarly, the total
potential energy of the system, as derived in [2, 4] taking into account only nearest-neighbor interactions and ignoring
interactions with empty sites, is given by −ELF = rNρ̃ε∗.
Hydrogen-Bonding. The interaction energies due to hydrogen-bonding contribution are in excess of the physical
interactions, and is denoted Ei j

0 for the hydrogen bond between a donor of the i-th type and an acceptor of the j-th
type. If Si j

0 is the entropy loss associated with the (i, j) bond formation, Vi j
0 is the respective volume change, and

there exist Ni j bonds of the (i, j) type each with Pi j probability of formation, the number of ways of distributing the Ni j
bonds among the functional groups of the system is Ω and the total hydrogen-bonding energy of the system is EHB:
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where Nd
i and Na

j are the total number of i-type donor groups and j-type acceptor groups, leaving Ni0 and N0 j number
of unbonded i-donors and j-acceptors.
Free energy and equations of state. The respective Gibbs free energy in the above framework, i.e., Lattice Fluid
Theory with Hydrogen-Bonding (LFHB) [4], consists of two terms (G = GLF +GHB), with the lattice-fluid term given
by
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and the hydrogen-bonding contribution is given by
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where the system volume is V = rNṽv∗ + ∑m
i=1 ∑n

j=1 Ni jVi j
0), the reduced pressure is P̃ = Pv∗/ε∗, and the reduced

temperature is T̃ = RT/ε∗; various H-bonding fractions are νi j = Ni j/rN, νi0 = Ni0/rN, ν0 j = N0 j/rN, νd
i = Nd

i/rN,
and νa

j = Na
j/rN; ωk is the number of configurations available to a rk-mer in the close-packed pure state, ωk is treated

as a constant and will cancel out in all applications of interest here (for more details see e.g. [4]). The minimization
conditions with respect to ṽ and Ni j (i.e., ∂G/∂ ṽ = 0 and ∂G/∂Ni j = 0), provide the equation of state for the reduced
density and a system of equations for the fractions of hydrogen bonds in the system, respectively:

ρ̃2 + P̃+ T̃

[
ln(1− ρ̃)+ ρ̃

(
1− 1

r̄

)]
= 0 and

νi j

νi0ν0 j
= ρ̃ exp

[−Gi j
0

RT

]
(5)

where Gi j
0 = Ei j

0 +PVi j
0−TSi j

0. The reduced density equation of state together with the H-bond fractions equations
(5) can serve as a system of equations of state. The chemical potential of the k-th component is the sum of the partial
derivatives with respect to Nk of the two free energy terms (eq. 3 and 4).
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Binary mixture. Focusing on the phase behavior of a polymer-solvent binary mixture (index 1 denotes solvent, and
index 2 polymer, with mole fractions xi, and corresponding segment fractions φi and surface fractions θi), then simply
x2 = 1−x1 = N2/(N1 +N2) and φ2 = 1−φ1 = r2x2/r, with θ2 = φ2/(φ2 +φ1 s1/s2) , where s1/s2 is ratio of the surface
area per unit characteristic volume for solvent and polymer. The mixing and combining rules simplify to

v∗ = φ1v∗1 +φ2v∗2 and ε∗ = φ1ε∗1 +φ2ε∗2 −φ1θ2RTX12, (6)

where X12 =
(
ε∗1 +(s1/s2)ε∗2 −2(s1/s2)1/2ε∗12

)
/RT with ε∗12 = ξ12

√
ε∗1 ε∗2 . The dimensionless parameter ξ12 is the

only free parameter of the model, and is expected to have values close to unity.
Aqueous solutions of PEO and of P(EO-alt-EE) copolymers. Application of this LFHB theory to the water–PEO
solution phase behavior can yield the ξ12 parameter for EO. For this system, there are two types of H-bonds, water–
water and water–polymer, each water molecule has 2 donors and 2 acceptors, and each PEO molecule has a acceptors,
where a is the number of ether oxygens in each PEO. There will be three equations of state, one for the reduced
density and one for each H-bond type (eq. 5). LF and HB parameters of the model were obtained from literature
(fig. 1, [4, 15, 16]) and the ratio of surface areas per unit characteristic volume was calculated based on hard-sphere
parameters (s1/s2)EO = 1.3424. The dimensionless variable ξ12 is treated as a fitted free parameter, and for the phase
diagram of Mw = 105 PEO [17] the LFHB fit yields ξ12

EO = 1.0472 (fig. 1). This value of ξ12
EO is used in all later

calculations of the phase diagrams of our “polyester” and “polyamide” ethylene oxide copolymers without any further
change. The LFHB model can be extended to describe the phase behavior of the [(EO)m − (EE)n] copolymers, by
introducing only one more parameter for the EE monomer (ξ12

EE ) which can be obtained by fitting only one of the
copolymer binodals to the LFHB model (fig.1, fit of an m = 13, n = 6 ester copolymer [11] yields ξ12

EE = 1.0537). All
the rest of the copolymers will now be described by these same parameters, while accounting for the donor/acceptor
groups of the ester and amide linkage groups, and for the variation in EO/EE copolymer composition via m and n by
using the following simple combination rule (the weighted average):

ξ12 =
m

m+n
ξ12

EO +
n

m+n
ξ12

EE and
s1

s2
=

m
m+n

(
s1

s2

)EO

+
n
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(
s1

s2

)EE

(7)

Based on the hard-sphere model (s1/s2)EE = 1.3266. Replacement of EO segments with EE segments also decreases
the number of hydrogen bonding sites per polymer molecule to a2

2 = (a2
2)PEO · m/(m + n), where (a2

2)PEO =
Mpoly

w /MEO
w .

This approach provides excellent agreement with the experiments (fig. 2), which strongly implies that the copolymer
phase behavior is similar in nature as the aqueous phase behavior of PEO only temperature-shifted by the hydrophobic
EE group contributions, and the LFHB parameters are transferable between homologous polymers. The present model

Lattice fluid T ∗ P∗ ρ∗

parameters (K) (Pa) (kg/m3)

H2O 518 4.75 ·108 853
PEO 541 6.05 ·108 1172

H-bonding E0
i j Si j

0 Vi j
0

parameters (J/mol) (J/mol ·K) (m3/mol)

–OH · · · –OH −1.55 ·104 −16.6 −4.2 ·10−6

–OH · · · –O– −1.42 ·104 −16.0 −8.5 ·10−7

–OH · · · C=O −1.60 ·104 −15.8 −8.5 ·10−7

N–H · · · –OH −1.25 ·104 −7.8 −8.5 ·10−7

FIGURE 1. (left) Fitting of the model on experiments: fitting to PEO/water solutions[17, 18] yields the single adjustable
parameter for EO monomer, ξ EO

12 ; subsequent fitting to one ester copolymer binodal yields ξ EE
12 for the EE monomer; both ξ EO

12
and ξ EE

12 are then used for all other ester and amide copolymers with no further adjustment. (right) The rest (unadjustable) LFHB
parameters.
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FIGURE 2. LCST dependence on the hydrophilic/hydrophobic balance m/n for m-EO/n-EE polyester (left) and polyamide
(right) copolymers. For the experimental m/n polymers the LCST with explicit Mw dependence (symbols) are calculated, whereas
the LCST for Mw=600K is also provided for a wide m/n range (line).

takes into account both water-polymer and water-water H-bonding, however it does not account for the orientation of
donor and acceptor sites with respect to each other, due to the purely statistical nature of the model. Thus, the model
retains a mean-field character and inherent drawbacks, which makes it impossible to account for difference between
alternating, random, and especially highly-segmented or block copolymers, or account for end-group effects (all of
which are extremely important for the phase behavior of the copolymers in question).

Higher fidelity mean-field approaches, including those based on a quasi-chemical lattice-fluid framework and
on hydrogen bonding cooperativity, as well as molecular based simulations, should be applied, if one is to obtain
more insights into the phase behavior –and ultimately into quantitative design principles– of polymers with tunable
temperature response.
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