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Nonlinear dynamics of melted polymer layers
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Abstract

A theory for non-linear rheology of molten polymer layers between solid
surfaces in the Rouse regime is discussed. It is shown that the effect of
finite extensibility of polymer chains leads to the characteristic 1/3 power
law for the shear stress vs. shear velocity in the regime of high velocities. It
is also shown that bridging polymer fragments connecting the two surfaces
play an important role for -the rheology if the effective monomer friction
in the immediate vicinity of the surfaces is much higher than far from the
surfaces. In particular we predict that shear stress is decreasing with shear
velocity u in a limited range between u; and Uy, This effect results in
a possibility of stick-slip periodical dynamics of the layer under a constant
imposed velocity.
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1. Introduction

Polymer liquids show very rich and complex rheological behavior [1-3]. While
recent research efforts were focused on dynamics of high-molecular-weight (entangled)
polymers in the bulk (3,2}, it was also recognized that rheology of confined polymer
systems differs significantly from the bulk polymers even if the chains are short and
not entangled (M < M.). In particular, experiments show that confined polymer
nano-layers show non-linear rheological behavior at much smaller shear rates than
their bulk counterparts [4-8]. One of the important factors that controls rheology
of polymer films is the surface - monomer interaction. In the case of attractive
interaction polymer forms thin virtually adsorbed “glassy” layers near each surface.
The effective monomer friction in these “glassy” layer is normally much higher
than in the bulk.

The aim of the present article is to review some recent theoretical approach-
es [9-12] to non-linear rheology of confined unentangled polymer melts. The stress
vs. shear rate dependencies will be considered first for the bulk systems (next
section) or for thick films (film thickness h is larger than polymer size R), where
a new theory of Rouse polymer dynamics taking into account non-Gaussian chain
elasticity is described. The case of thin films (b < R) is considered for the
regimes of moderate and high surface frictions in sections 3 and 4 respectively. In
particular the role of bridging polymer fragments is analyzed in detail. A theory
of stick-slip sliding motion in thin polymer films is presented in the last section.
In all the cases the theoretical treatment is limited by a scaling accuracy, and the
numerical prefactors in scaling dependencies are entirely ignored.

2. Nonlinear rheology in the bulk

Rouse model

Let us consider a melt of polymer chains in the regime of no entanglements:
pumber of links per chain N smaller than Ne (=number of links per entanglement),
N < N.. Polymer contribution to stress tensor can be generally represented as [1,3]:
Top = c2f=1<f((,")r§,")>, where ¢ = g s concentration of polymer chains (Nv is the
effective volume per chain), a,f =1,2,3 enumerate the Cartesian coordinates, ()
is the position of the n-th monomer of a chain, and f( is the dissipative (friction)
force acting on the n-th monomer, and () means averaging over all chains. !

Let us impose a hydrodynamic shear flow field, u, = Jz, uy = ¥z = 0. The
friction force acting on a monomer is f = (oAu, where Au is the difference between
the flow velocity and the monomer velocity.

It is convenient to define the coordinate system so that its origin coincides
with the centre of mass of a polymer chain. The velocity of all monomers

of this chain is then zero on the average since the flow is stationary, so that
fo = CoAuz ~ (otiz = (o742, and shear stress is

1Note that the total force acting on a monomer is a sum of f + f', where f’ is the total
conservative force (due to the polymer chain elasticity). Since inertial effects are normally
absolutely negligible for polymer dynamics, the total force is zero, so that f = —f.
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where {2, is the chain size in z-direction. Taking into account that RZ ~ RZ, where

— 2 . e . . . ’
R=N /.a is the equilibrium size (end-to-end distance) of a polymer coil in the
melt (a is the polymer statistical segment), we estimate the shear stress as

. 1 .
Opz ~ Q,c‘yNza.z = ;(oNaz—y (2)

The hydrodynamic friction force is acting in x-direction. Therefore the force does
not perturb the coil size in z-direction, since polymer chains in the melt state are
c.ha.racterized by Gaussian elasticity. Thus eq. (2) formally holds for any shear rate
4, implying that shear viscosity is independent of shear rate

1
Mo ~ ;CoNfl2 (3)

which is a well-known result of the standard Rouse theory [3].
The total friction force acting on, say, half of a chain in the flow (x) direction

Fz"’Nfz"‘NCO"YRz

wht.ere R, is the chain size in z-direction. This force stretches the chain in
x-direction by

AR, ~ F.Na®> ~ N*a®(o¥R, (4)

(here and below we consider the thermal energy kpT as energy unit). Employing
a dumb-bell picture of a polymer chain (two halves of the chain are substituted
by material points separated by AR) we get the xx-stress component, 0=z ~
¢(F,AR,) ~ LN® (470)?, where 7o = (oa? is the monomer time. Thus we get the
well-known (3] result for the first normal stress

1
Nl = Ozzg — Ozz = Ozz ™~ —Ns ("77-0)2
v

Finite extensibility of chains

Let us now take into account that as the flow stretches the chain more and
more, its elasticity should start to deviate from of an ideal Gaussian coil. In
particular the chain can not be stretched more than its total contour length
L ~ Na. Therefore eq. (4) is valid only if AR, < L, or if ¥ <9" = LN-302,
In the opposite regime 4 > 47, the flow field could nearly completely “stretch
the chain in the x-direction, so that R, ~ Na. Simultaneously the chain is
compressed in two other directions. In order to estimate, say, R,, we note that
the typical chain tension P must be of order F, ~ N(o¥R.. Therefore the total
force acting on half of the chain in z-direction is P, = —Ptana ~ F.R,/R., where
a is the angle between the stretched chain and x-axis, tana = R./R,. Thus
we get P, = —AR, where A = F./(Na). The corresponding effective potential is
U*(R.) = JAR?. The typical value of R, due to thermal fluctuations is determined
by the condition U*(R.)~ 1 (in kgT units), which can be rewritten as

R~ ——

*~ GRA "
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so that R, ~ a(ym)™"* = R(3/4")™"*. Eq. (5) is valid if the effect of flow
on R, is strong, i.e. for the regime 4 > 4, where R, < R = N'%a. In this
regime the global chain conformation is essentially non-Gaussian in all directions.
However small parts of the chain still obey Gaussian statistics in z-direction.
In particular the transverse dimension of a segment consisting AN monomers is
R,(AN) »\«a(AN)I/2 if AN < g, where g is the number of links per characteristic
hydrodynamic “stretched blob” which is defined by the condition ¥*(g) = %g‘:’/’ ]
so that g ~ (470)"*/®. Note that the shape of a “stretched blob” is strongly
asymmetric: Ra(g) ~ ag ~ a(370) "%, Ri(g) ~ Ry(g) ~ a(370)™/°, Ra(g) > Ru(g)-
" The typical hydrodynamic force acting on a stretched blob is F.(g) ~ l/a, so
that the blobs are really nearly completely stretched along the flow. The chain
conformation on scales larger than g can be represented as a linear sequence of
“stretched blobs”: the size along the flow, R., is proportional to the number of
blobs, N/g, and the transverse size is nearly independent on the number of blobs:
R.(g) ~ R.(N). Of course conformation of a chain and its sizes are strongly
fluctuating with some characteristic frequency [9]. In particular the chain is not
completely stretched along the flow all the time, but rather roughly half of the
time; another half of the time the chain is moderately stretched.
Thus the scaling dependence of the transverse size on the shear rate is

Nl/z , Y < At
Rz ~ .a 2/3 ‘Y ‘.7‘ (6)
af (1m0)"" , ¥ > 7

Using egs. (1), (6) we get the shear stress

770'.7 ) 7 < ;7* (7)
Ozz = 1 1/3 . .
(M) >y

and nonlinear shear viscosity

) y <q*
7 0‘n~{7l0 v Y (8)

7 @A) >

where 79 is defined in eq. (3). Thus we predict shear thinning with -2/3
power law [9]. Note that although this viscosity behavior is often observed
experimentally [1], most of the data concern systems in entangled regime rather
than Rouse regime.

The effect of a finite chain extensibility is also revealed in the shear rate
dependencies of normal stress differences. With the same arguments as above we
get:

{lN“(w’ <A

Nl ~ vN . 2/3 . -

M) >
The second normal stress difference, N, = o, — 0y, is known to be exactly zero for
the classical Rouse model [3]. With finite chain extensibility we get N, ~ Ni/N:
the second difference is positive everywhere, although it is much smaller than Nj.

=77

3. Confined polymer layers: weak adsorption limit

Let us consider now a confined situation: polymer melt in a slab of thickness #
between two solid surfaces, a € h « N'/2a. Let us assume that due to favorable
local interactions between polymer segments and the surfaces, the effective monome:
friction constant near the surfaces, (1, is much larger than the friction constant ¢
in the middle part of the film: {; > (o. We will also assume that the thicknes:
A of the effective “glassy” layers near the surfaces is of order of monomer size
A~ a.

If the upper surface is moving with constant velocity u with respect to the
bottom one, then the apparent imposed shear rate is 4 = u/h. Two basic source
of friction can be distinguished: (1) friction in the “glassy layers” a+a; (2) friction
in the middle part of polymer layer, h — 2a. The friction force in a glassy layer
is proportional to ¢; and to the surface slip velocity u,: o ~ G5u,, where 2 is
the number of monomers per unit area of “glassy layer”. The velocity change in
the middle part of polymer layer, A —2a, is Au = u — 2u,, so that the effectivc
shear rate is .5y = hﬂ;ﬂ ~ "—':—“'- The friction force in the ‘middle part is definec
by eq. (1), where R? should be substituted by k% o, ~ 1.7sCoh?. Obviously oy
must be equal to o,. However if we assume for a moment that u, ~u — 2u, ~ u,
then we get

Cla_

0’1/02 =TT =

. Gh ™

The layer dynamics is thus essentially dependent on the parameter gu. The regime
p < 1 is called here “weak adsorption” regime. Note that both inequalities
p <1 and (1 > (o can be fulfilled simultaneously. Obviously in the case of
weak adsorption the “bulk” friction (in the middle of the layer) is high enough in
comparison with the surface friction so that the surface slip must be very strong:
u, ~ u/2, the velocity gradient is concentrated in the “glassy layers”, the effective
shear rate is much smaller than the apparent one. The shear stress is

sz~ (s (9)
v2

The last equation is valid as long as surface slip is strong. This ceases to be the
case for very high shear velocities, u > u**: in this regime the shear flow stretches
the chains so strongly that their typical transverse size becomes much smaller than
h leading to a strong reduction of the bulk friction and to elimination of the slip.
In the region u > u™ the shear stress is determined by the “bulk” equation:

c=n(iy =2 (&) (10)

where 7(§) is the nonlinear bulk viscosity defined in the second line of eq. (8),
and ¥ =u/h. A smooth crossover between equations (9) and (10) implies that
7_01/z a3/?

~ Tla/z R1/2

-

u

where 71 = (;a® is the typical monomer time in the glassy layers. Note that the
crossover velocity between linear and non-linear regimes is decreasing as surface
friction in increased; u™ is also decreasing as the gap h is increased.
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Thus we predict the following behavior of the apparent viscosity 7ap = % in

the “weak adsorption” regime:

{ %C]h , u < u**
Tapp ~ A \2/3 -
(&) u>e

v

This prediction is in qualitative agreement with experiments and computer simula-
tions [6-8,13].

4. Strong adsorption limit

Let us consider the case of very viscous “glassy layers”, the precise condition
is specified below.

Statics

‘It is well known that homopolymer chains obey Gaussian statistics in the melt
state. In a melted layer the same is true for chain parts - blobs, g - if the blob
size ag'/? is smaller than the layer thickness h, i.e. g < go = h®/a®. A confined
chain is Gaussian on scales g < go and it is flat on larger scales, g > go.

Any monomer belonging to a thin “glassy layer” will be referred to as a
contact between the chain and the corresponding surface. Gaussian statistics
implies that the typical (average) number of contacts of a go-blob with a surface
is mo ~ = h/a. The typical number of contacts of a smaller g < go blob which
comes close to a surface is n(g) ~ g*/2. Number of go-blobs per unit area is

Rl a?
o = —— = —
vge hv

Let us distinguish between loops (chain parts between contacts with the same
surface) and bridges (chain parts between contacts with different surfaces). An
arbitrary conformation of a long confined chain (N > go) can be represented as a
sequence (alternation) of bridges and attached blobs consisting of neighboring loops
“grafted” to the same surface (there are of course also tail parts, but these are
short). The typical number of monomers per bridge or per attached blob is go.

It turns out that distribution over the sizes of attached blobs is important for
dynamics. In order to find this distribution let us consider a contact (a monomer
belonging to a “glassy layer”).. The next surface contact might be with the same
surface (with probability p’) or with another surface (with probability p =1—p'). A
contact with a different surface implies a bridge of ~ go links. Thus the probability
p can be estimated as the probability that an end-grafted Gaussian subchain /qg
does not contact the grafting surface any more. This probability is [14] p ~ go
Therefore the probability that an attached blob consists of n loops (n+1 contacts)
is

P = 0(p)" = p(1 — ) = pexp (—np) ~ g5"/* exp (—ngs /*) (11)

Taking into account that an attached g-blob typically consist of n(g) ~ g''* loops
we get two-dimensional concentration of attached blobs containing of order of g
monomers (number of these blobs per unit area):
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agl/? 1/2
v(g) ~ vonpn ~ ;%— exp (—“]17 (12)
90

Note that »(go) ~ 1o, and »(1) ~ 21

Life-time of an attached blob

Let us denote 7(g) the life-time of an attached blob (the typical time during
which all contacts between the blob and the surface break and the blob detaches
from the surface). Obviously 7(1) ~ 7. In general case the detachment/attachment
process of a larger blob can be considered as a diffusion along the variable n = n(t),
the total number of contacts. An elementary step n — n 4 1 occurs during a
typical time At ~ 7 /n, since there n monomers in the surface “glassy layer” with
the monomer life-time 7. Eq. (11) implies that statistical weights of “states”
with different n’s are nearly equal as long as n < g/*. Therefore n(t) must be
essentially random (rather than biased) diffusion, so that An(t) ~ (t/At)"/?. The
detachment time is given by the condition An ~ n:

7(g) =t ~ (At)n? ~ mn ~ 1 g*/? (13)

Therefore the life-time of a typical gy blob is

h
Ty =r(g0) ~ g =z (14)

On the other harnd relaxation (Rouse) time of a free go-blob (which does not
contact any surface) is
B\
T, ~ 7‘093 =To (—)
a

Below we assume that the surface time is much longer than the Rouse time:
Ty > T, (“strong adsorption limit”), i.e.

os (i—') (15)

Finally we note that T; is simultaneously the life-time of a typical bridge:
detachment of an attached blob that typically happen during this time implies that
two adjacent bridges transform to one loop.

Linear rheology

Let us again impose a motion of the upper surface with respect to the bottom
one, assuming first that the velocity u is small enough. There are two main
contributions to the shear stress: (1) due to elongation of bridges as the upper
end of each bridge is shifting together with the upper plate it is attached to; (2)
due to friction between the monomers like in the bulk. The effective maximum
elongation is Az ~ uTy; the corresponding force per bridge is Fj ~ Az, . The
bridge contribution to the stress is proportional to Fy and the concentration of
bridges: o1 ~ 1o F}y ~ 25, The bulk contribution due to friction between loops and
bridges can be estimated using eq. (1) with k instead of R,, and ¥ = u/h:

72~ AT ~ %%h’ (16)
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3
Note that o3/0y ~ f‘“(%) , l.e. o3/oy < 1 the bulk contribution to the linear
friction is negligible in the “strong adsorption regime” (see ineq. (15)). Thus the
shear stress is dominated by the elasticity of the bridges:

o':a'1~Eﬂ (17)

Eq. (17) is valid if the typical bridge elongation during the life-time, Az, is smaller
than the bridge contour length ~ goa, Az < goa, ie. u < uy ~h/m.

Non-linear rheology

In the regime of higher velocities, u > u;, the bridges completely elongate
during the time ¢* = #2 which is much shorter than the equilibrium bridge life-time
Ti. The average force during the elongation process is F, ~ '—o— ~ b= 1. This
force can not induce any noticeable “creep” of the attached blobs (at the ends of
the bridge): in fact even if we assume that the whole F is applied to the very
end monomer of the bridge situated in the “glassy layer” near one of surfaces,

the corresponding slip velocity of the monomer would be v, = %} ~ —— Lwy = (1’-‘:"

Therefore both attached blobs at the bridge ends are essentially grafted to the
surfaces during the elongation process. However as soon as the complete elongation
of a bridge is achieved, both blobs must start to move with respect to the surfaces
with the velocities u/2, hence the elongation force must sharply increase, and at
least one of the attached blobs rapidly detach from the corresponding surface.
The typical life-time of an attached blob is thus t* (or smaller) in the non-linear
regime u 3> u;. Therefore a large attached blob of size, say, go, could not possibly
appear in this case: the attachment time of a go-blob is Ty > t*, so that the blob
just do not have enough time to be attached: it will be pulled from the surface
by the bridge elongation force much earlier. Only blobs which are small enough
could possibly attach to a surface. Obviously the typical (terminal) size, g*, of an
attached blob is determined by the condition 7(g*) ~ t*, that is 7 (") ~ ¢*, or

B2 \?
gm - ( )
uaTy

Using eq. (12) we find that the bridge concentration, », (which is equal to
concentration of attached blobs) is decreasing with w:
g.)1/2 a? 1

VBNV(Q*)NVO (— ——
Jo T u

The shear stress contribution due to bridges is

1 a
=pnh~-— (18)
VU

The total stress is the sum of two contributions oy and o, given by eqgs. (16), (18):

l(a hu-ro>
oc=0y+0y=—|—+

v \un a?

Note that the stress decreases with u in the region %, < ¥ < tmin, and attains a

local minimum at
a3/

U= Umin ~ 5717
hl/Z (Tqu)l/z
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In the region u > umin the stress contribution due to friction between loops (o)
dominates the bridge contribution (¢y) which is small since most of the bridges
are effectively destroyed by the flow in this regime.

At even higher velocities, u > u;, the flow strongly elongates the loops along
the stream, and simultaneously compress them in the transverse (z) direction. The
crossover velocity u, is determined by condition R, (,5_) =h, where ¥ =4 is the
shear rate, and R,(§) is defined by eq. (6). Thus we get
a a?

i
The shear stress in the non-linear regime, u > u,, is defined by the “bulk”
equation (7) with 4 = u/h:
1 fure\1/3
-~ (%)

Thus we predict the following dependence of the shear stress on shear velocity
in the “strong adsorption” regime:

Uz ~

syhl;‘ , u<uy

> %('ﬁ) , U1 < U < Upmin (19)
Lhmu ) Umin < U < Uy
%(?)1/3 , UD> Up

The shear stress is increasing from o =0 to ¢ = opmaz ~ ‘1—,% as the velocity in
creased from 0 to wu;, then in the region u; < u < upmi, the stress is decreasing

1/2 . . . .
from Omaz tO Opmin ~ % (ﬁn) , then the stress is increasing again nearly linearly

with u back to Omees at u ~ uy; finally the stress follows u/3 law for u > u,. Note
that omer is much larger than Omin: Omaz/Cmin ~ (%;_:)1/2 > 1, see ineq. (15).
Note also that omae/Tmin ~ Umin/U1 ~ Uz/Umin.

Both decrease and increase of shear stress vs. shear rate was observed while
shearing thin polymer films [15], however the reported experimental data are not
extensive enough to allow a systematic comparison.

Let us consider the situation under stress-control conditions: a constant shear
stress is applied to the film. As the stress is increased from zero to Om.. the shear
velocity must continuously (and linear) increase from 0 to u;. However the only
stationary velocity corresponding to a larger stress ¢ > ez is u > uy. Therefore
the velocity jumps from u; to u; at & = opmaez. In the region o > opmar the velocity
is rapidly increasing as ¢%. Thus oOmsz can be considered as a sort of “yield
stress” for the layer: in the regime o < oma.. the behavior is more “solid-like”
(elongation of bridges + slow creep), whereas for o > oms- the system suddenly
becomes much less viscous because here nearly all bridges must be broken by the
flow (“fluid-like” behavior). Note that the “yield stress” is inverse proportional to
the layer thickness h, and thus is tending to 0 in the bulk limit.

5. Stick-slip motion

It is well-known [16] that a stationary sliding motion might become unstable in
the regime when the friction force is decreasing with the imposed velocity. Below
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we show that this is indeed the case for shearing dynamics of polymer layers in
the “strong adsorption” limit. Normally a sliding velocity uo(t) is applied to the
system via a mechanical coupling - an effective elastic spring x. The stress implied
by the spring deformation zo(t) — z(t) is o = k(zo(t) — =(t)), where zo(t) = uot is
the imposed shear displacement, and z(t) is the actual displacement of one layer
surface with respect to another, so that u = 4‘%@ is the actual shear velocity.

Let us assume that the imposed velocity corresponds to the regime where the
stationary stress is decreasing with u: u; < Uy < Umin, and that the initial stress
is small, ¢ € Opas. Then as long as the stress o is smaller than oym.., the actual
velocity u is smaller than u;. Therefore here % = "7"1 - j—f) = &(uo — u) ~ Kug, so
that the stress is nearly linearly increasing with time: o ~ o(0) 4+ xuot. The stress
grows up to Ome, during the time #; ~ 1':"‘:0‘ As soon as the stress exceeds Omaz,
the actual velocity jumps to a much higher value u; > uy; simultaneously nearly
all bridges break. Thercfore the stress starts to rapidly decrease for ¢ > t;, since
% = k(ug —u) ~ —rku in this regime. The actual velocity follows the same branch,
Umin < U < Uy, it switched to at £ =¢; until the stress falls down to o = opmin. At
this moment (¢ =t,) the actual velocity switches back to the low-velocity branch
(v <uy); the velocity at t=t; can be found using eq. (19): u ~ %ﬁ—: L uy. At
this point the bridges start to restore, and the whole cycle repeats again.

The type of motion described above is called a stick-slip motion [17,18]: The
stress is periodically changes with time, each period consisting of two stages: (1)
stick, linear increase of the stress due to deformation of an elastic coupling (spring),
0 <t <ty (2) slip, a rapid decrease of the stress down to Omin, t1 <t < t5. As
the second stage is much faster than the first one, the total period T,, of the
stick-slip motion is close to #;:

la 1

Tn >ty = Tmaz N g —— (20)
Ky v h Kug

Note that the period is inverse proportional to the imposed velocity.

The dynamical picture described above is valid if the bridges have enough time
to restore during the first stage ¢, i.e. if #; is much larger than the bridge
(attached blob) relaxation time Tj. The last condition (¢; > Ti) can be rewritten
using eqs. (14), (20) as uo < u”, where

.11 (a)’l
uw=——(=] -
v \h/ &
Two conditions mentioned above, uy > u; and wu, < u* are compatible only if
u* > uy, e if
2
a
K< K ~— 21
K~ (21)
Thus a stick-slip motion is predicted in a limited range of imposed velocities if the
elastic coupling constant is not too large (x < x*) in qualitative agreement with
experimental observations [4,19-21]. Note that the last condition is not too strong
if the layer thickness h is small enough.

i A A L NI
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6. Conclusions

(1) A simple scaling behavior of the non-linear viscosity, 7 oc 473 if 4 > 4*, is
predicted in a melt of Rouse polymer chains with finite contour length; the critical
shear rate 4* is proportional to N-3/2,

(2) The same scaling behavior is also predicted for thin polymer layers if the
surface friction is moderate (“weak adsorption” regime); in this case the critical
shear rate is inverse proportional to the surface friction constant in the power 1.5.

(3) A non-monotonous stress vs. shear velocity behavior is predicted for the
case of high surface friction; in this case the layer rheology is characterized by an
effective “yield stress” which is inverse proportional to the layer thickness.

(4) A stick-slip periodical motion under a constant imposed velocity is predicted
for the case of low enough elastic coupling constant «: the process can be
considered as an alternation of bridge formation and bridge breakage stages.
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