Conformations

nteresting Questions

• Why Doesn't the Chain Just Sit in its Minimum Energy Conformation?

- e.g. polyethylene
- What is the Effect of Thermal Motion ?
- How Many Shapes or Conformations are Available to a Chain ?

Random Flight

A polymer sample will Contain billions and billions of Chains:

Hence, we will need two things:

- 1. Description of the Distribution of the End-to-End Distance (R)
- 2. Some measure of the average Value of the End-to-End Distance

Reproduced with permission from L. R. G. Treloar, The Physics of Rubber Elasticity, Third Edition, Clarendon Press, Oxford, 1975.

Bond Angles & Rotations

1-Dimensional Random Walk

Q: What is the average distance traveled from the Phyrst for drunken walks of N steps? (Assume each step is 1 unit in length).

WALK	R
1	+ 30
2	+ 50
3	- 40
4	- 50
5	+ 40
6	- 30
-	

$\langle \mathbf{R} \rangle = \mathbf{0}$

- Distance Traveled Regardless of Direction
- Answer:
 - Determine R for a Whole Bunch of Walks
 - Determine <R²>
 - Calculate $\langle R^2 \rangle$ ^{0.5}

Feyman's Method

For a Walk of One Step:	$< R_{1}^{2} > = 1$
For the N th Step:	$R_{N} = R_{N-1} + 1$ $R_{N} = R_{N-1} - 1$
Square:	$R_{N}^{2} = R_{N-1}^{2} + 2R_{N-1} + 1$ $R_{N}^{2} = R_{N-1}^{2} - 2R_{N-1} + 1$
Average of Squares:	$< R_{N}^{2} > = < R_{N-1}^{2} > +1$
Recalling:	$< R_{1}^{2} > = 1$
Then:	$< R_{2}^{2} > = < R_{1}^{2} > + 1 = 2$ $< R_{3}^{2} > = 3$ etc. $< R_{N}^{2} > = N$

Polymer Chain - - - end-to-end distance

If N = 10,000, l = 1;
$$\langle \mathbf{R}^2 \rangle^{0.5} = 100 ! ! !$$

$$< R^{2} > = N l^{2}$$

 $< R^{2} > 0.5 = N^{0.5} l$

End-to-End Distances

- If a chain in its most probable state is stretched, then it enters a less probable state
- An entropic driving force to return the chain to its most probable state is created

Grueial Points

•We have figured out a way to Describe a collection of random Chains

- •A qualitative understanding of Rubber elasticity immediatly follows
- •A pathway to more rigorous and quantitative work is opened up