STRUCTURE

Chapter 7 Fundamentals of Polymer Science Paul C. Painter Michael M. Coleman

Partial support for this work was provided by the National Science Foundation's Advanced Technological Education Program."

Q: Relationship to Microstructure

Q: Relationship of Structure to Properties

States of Matter

Small Molecules

----→ Gas

"1st-Order" Transitions

Solid (Crystalline)

The Gassy-State

Two Possibilities; Observed Behavior

depends on:

- Structure
- •Cooling Rate
- Crystallization Kinetics

Many Materials form metastable glasses - what about polymers like PET, atactic polystyrene?

States of Matter

No Gaseous State

Also: x-linked rubber + solvent (gel) liquid crystalline polymers, etc.

History of Rubber

- ~ 1500 Columbus Stumbles Across Haiti
- ~ 1600 Missionaries Observe Indians Making Crude Rubber Shoes (Caoutchouc)
 - 1700 Joseph Priestly Invents a Name
 - **1820** 1st Rubber Shoes
 - 1832 Mackintosh
 - 1833 Goodyear Starts Work on Rubber
 - 1844 Vulcanization
 - 1875 Henry Wickham -- Pirate or Con-Man?
 - 1922 Stevenson Plan
 - 1942 Synthetic Rubber Project
 - 1988 Penn State Rubber Project

Harrison Experiment

- Material Derived from Trojan-Enz
- Samples Cut Out With a Dog Bone Cutter
- **Test -- Tensile Elongation (1 cm per minute)**
- Uniaxial **Deformation** ~ 1,000 %
- Biaxial **Deformation** ~ 300 %
- **Estimated Burst** Pressure ~ 57 psi

~ 4 atm.

Polymer Structure

The Issues

- Bonding & the Forces between Chains
- Conformations
 - Ordered
 - Disordered
- Stacking or Arrangement of Chains in Crystalline Domains
- Morphology of Polymer Crystals (and Things like Block Copolymers)

nterettons_

Interaction Energy Depends Upon the Balance Between Attractive and Repulsive Forces

Attractive Forces

Type of		Approximate
Interaction	Characteristics	Strength
Dispersion Forces	Short Range	~0.2 to 2
Dipole / dipole	Varies	kcal./mole
(Freely Rotating)	as 1/r ⁶	
Strong Polar Forces	Complex Form,	~ 1 to 10 kcal. /
& Hydrogen Bonds	but Short Range	mole
Coulombic, as Found	Long Range,	~ 10 to 20 kcal/
in Ionomers	Varies 1/r	mole (?)

Dispersion Forces

Interaction between fluctuating dipoles whose average value is zero (!) eg: simple hydrocarbons

$$-CH_{2}$$
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{2}

Ronds

Polar Forces

Chain - like Hydrogen Bonded Structures Amide Groups Urethane Groups Hydroxyl Groups

Schematic
Diagram
of Clusters
in an
Ionomer.

- Hydrocarbons -- PE, IPP, PS, etc.
 - Weak Dispersion Forces
- Polar Polymers -- PVC, PAN, etc.
 - Eg: Those Containing Heteroatoms (O, N, Cl, F) --Dipole/dipole Interactions
- Hydrogen Bonding Polymers
 - Eg: Nylons, Polyurethanes, etc.
- Lonomers
 - Eg: Surlyn

Increasing Interaction Strength