POLYMERIZATION KINETICS

THERMODYNAMICS

Tells us where the system would like to go eventually !! ie.defines relationships between macroscopic variables at equilibrium

KINETICS

Tells us how fast the system takes various reaction paths

EXAMPLES

CRYSTALLIZATION IS ALSO A PROCESS CONTROLLED BY KINETICS, AS WE WILL SEE LATER

POLYMERIZATION KINETICS

STEP GROWTH - SLOW

Can use statistical methods as well as kinetics to describe mol. wt. distributions – more on this later

CHAIN Polymerization - FAST

Can apply statistical methods to an analysis of the microstructure of the products, but not the polymerization process and things like mol .wt.

KINETICS OF STEP GROWTH POLYMERIZATION

WHY BOTHER ?

- •How long does it take to make polymer ?
- •Can we speed up the reaction ?
- •What is the relationship between kinetics and the Mol. Wt. Of the product ?

REVISION

RATE OF = CONSTANT x [CONCENTRATION]ⁿ TERMS REACTION

RATE OF DISAPPEARANCE OF MONOMER = $-\frac{dM}{dt}$ = $k \times \left[\text{CONCENTRATION} \right]^n \text{TERMS}$

KINETICS OF POLYCONDENSATION

KEY ASSUMPTION - FLORY

The reactivity of a functional group is independent of the length of the chain to which it is attached

WAS FLORY RIGHT?

Redrawn from the data of Flory,P.J., Principles of Polymer Chemistry,Cornell University Press, 1953, p71

KINETICS OF POLYCONDENSATION

 $A - A + B - B \longrightarrow A - AB - B$

Kinetic equation for this type of reaction is usually of the form:

Reaction Rate =
$$-\frac{d[A]}{dt} = k_2[A][B]$$

N.B. [A] AND [B] ARE THE CONCENTRATIONS OF FUNCTIONAL GROUPS

However, esterifications are acid catalyzed and in the absence of added strong acid

$$-\frac{d[A]}{dt} = k_3[A]^2[B]$$

MORE KINETICS

$$-\frac{d[A]}{dt} = k_3[A]^2[B]$$

 $[\mathbf{f} \quad [\mathbf{A}] = \ [\mathbf{B}]$

c = [A] = [B]

Hence

$$-\frac{dc}{dt} = k_3 \ c^3$$

$$\int_{c_o}^c \frac{dc}{c^3} = k_3 \int_{t=0}^t dt$$

$$2k_3 t = \frac{1}{c^2} - \frac{1}{c_o^2}$$

EXTENT OF REACTION

Define

p = EXTENT OF REACTION

In this example

LET p = # OF COOH GROUPS REACTED # OF COOH GROUPS ORIGINALLY PRESENT

ACID CATALYZED REACTION

Redrawn from the data of Flory,P.J., J.A.C.S.,61,3334(1939)

NUMBER AVERAGE DEGREE OF POLYMERIZATION

KINETICS OF FREE RADICAL POLYMERIZATION

We need to consider the following steps

INITIATION
PROPAGATION
(CHAIN TRANSFER)
TERMINATION

INITIATION

INITIATION

THEN WE SHOULD ONLY HAVE TO CONSIDER k_d

i.e.
$$-\frac{d[I]}{dt} = \frac{1}{2} \frac{d[M_1]}{dt} = k_d [I]$$

BUT; ONLY A FRACTION f OF RADICALS INITIATE CHAIN GROWTH

PROPAGATION

$$M_{1} + M \xrightarrow{k_{p}} M_{2}$$

$$M_{2} + M \xrightarrow{k_{p}} M_{3}$$

$$r_{p} = -\frac{d[M]}{dt} = k_{p}[M][M \cdot]$$
In general;
$$M_{x} + M \xrightarrow{k_{p}} M_{x+1}$$

Assumption; reactivity is independent of chain length

TERMINATION

COMBINATION

DISPROPORTIONATION

$$M_{\dot{x}} + M_{\dot{y}} \xrightarrow{k_{td}} M_{x} + M_{y}$$

RATE OF TERMINATION

$$r_{t} = -\frac{d[M \cdot]}{dt} = 2 k_{t} [M \cdot][M \cdot]$$

Where
$$k_t = k_{tc} + k_{td}$$

OBTAINED FROM :

- Both reactions are second order
- Rate of removal of chain radicals
 = sum of the rates of the two termination reactions

SUMMARY

$$r_{i} = \frac{d[M_{i}]}{dt} = 2 f k_{d} [1]$$

$$r_{p} = \frac{d[M]}{dt} = k_{p} [M][M \cdot]$$

$$r_{t} = -\frac{d[M \cdot]}{dt} = 2 k_{t} [M \cdot][M \cdot]$$

PROBLEM :

We don't know [M·]

SOLUTION :

Assume a steady state concentration of transient species

STEADY STATE ASSUMPTION

 $[M \cdot] = CONSTANT$

This means that radicals are consumed at the same rate as they are generated

$$r_{i} = r_{t}$$
2f k_d [I] = 2 k_t [M·]²
[M·] = \left[\frac{fk_{d}[I]}{k_{t}}\right]^{1/2}

RATE OF PROPAGATION

RATE OF PROPAGATION = RATE OF POLYMERIZATION

$$r_{p} = R_{p}$$
substituting;
$$r_{p} = k_{p} \left[\frac{fk_{d} [I]}{k_{t}} \right]^{1/2} [M]$$

BUT [I] IS NOT CONSTANT

from $-\frac{d[I]}{dt} = k_d [I]$ obtain $[I] = [I_0] e^{-k_d t}$

HENCE

$$R_{p} = \left[k_{p} \left[\frac{f k_{d}}{k_{t}} \right]^{1/2} \left[M \right] \left[I_{0} \right]^{1/2} \right] \left[e^{-k_{d} t/2} \right]$$

WHAT DOES THIS TELL US ?

1. IF WE WANT TO INCREASE R_p INCREASE [M] OR [I]

2.
$$R_p \sim k_p / k_t^{1/2}$$

3. TROMSDORFF EFFECT

But; changing [I] also changes mol. wt. - more on this later !

For ethylene at 130 ⁰C and 1 bar pressure

 $k_p / k_t^{1/2} \sim 0.05$

For ethylene at 200⁰ C and 2500 bar pressure

 $k_p / k_t^{1/2} \sim 3.0$

CONVERSION

=

DEFINITION ;
$$\frac{[M_0] - [M]}{[M_0]}$$

Amount of monomer used up Amount of monomer at start

MAXIMUM CONVERSION

USUALLY THERE IS A FIRST ORDER DECAY IN INITIATOR CONCENTRATION

i.e.
$$\frac{d[1]}{dt} = -k_{d}[1] \qquad [1] = [1_{0}] e^{-k_{d}t}$$
and
$$\lim_{k \to 0} \frac{[M]}{[M_{0}]} = -\frac{2k_{p}}{k_{d}} \left[\frac{fk_{d}[1_{0}]}{k_{t}}\right]^{1/2} \left[1 - e^{-k_{d}t}\right]$$
hence
$$CONVERSION =$$

$$1 - exp - \left\{2k_{p}\left[\frac{f[1_{0}]}{k_{t}k_{d}}^{1/2}\right]\left[1 - e^{-k_{d}t/2}\right]\right\}$$
MAX CONVERSION (t \rightarrow \mathbf{Y}) =
$$1 - exp - \left\{2k_{p}\left[\frac{f[1_{0}]}{k_{t}k_{d}}\right]^{1/2}\right\}$$

AVERAGE CHAIN LENGTH

DEFINE KINETIC CHAIN LENGTH

RATE OF MONOMER ADDITION TO GROWING CHAINS RATE AT WHICH CHAINS ARE STARTED

This is the average number of monomers polymerized per chain radical at a particular instant of time during the polymerization

KINETIC CHAIN LENGTH

CONSIDER A TIME PERIOD t

let us say that

- 1. 100 chains are started
- 2. 1,000,000 monomers are reacted in this time period

Then the average degree of polymerization of these chains $\frac{1,000,000}{100} = 10,000$

KINETIC CHAIN LENGTH

THERE WILL BE SOME OBVIOUS ERRORS (e.g. What about chains that were initiated, but did not terminate just before the start of the chosen period ?), BUT THESE DECREASE AS t _____SMALL

IN THE LIMIT OF A TIME PERIOD dt

$$\mathbf{m} = \frac{\mathbf{r}_{p}}{\mathbf{r}_{i}} = \frac{\mathbf{k}_{p} [M]}{2 (\mathbf{f} \mathbf{k}_{d} \mathbf{k}_{t})^{1/2} [I]^{1/2}}$$

.e.
$$\mathbf{m} \sim \frac{[M]}{[I]^{1/2}} \text{ c.f. } \mathbf{r}_{p} \sim [M][I]^{1/2}$$

THE DEGREE OF POLYMERIZATION THEN DEPENDS UPON THE MECHANISM OF TERMINATION

$$x_n = m$$
 - disproportionation
 $\overline{x}_n = 2 m$ - combination

INSTANTANEOUS NUMBER AVERAGE CHAIN LENGTH

What if termination occurs by both mechanisms ? define an average number of dead chains per termination reaction

$$\mathbf{x} = \frac{\text{rate of dead chain formation}}{\text{rate of termination}}$$
$$= \frac{[2 \ k_{td} + \ k_{tc}][\ M \cdot]^2}{[\ k_{td} + \ k_{tc}][\ M \cdot]^2} = \frac{[2 \ k_{td} + \ k_{tc}]}{k_t}$$

HENCE

$$\overline{\mathbf{x}}_{n} = \frac{k_{p} [M \cdot][M]}{[2 k_{td} + k_{tc}][M \cdot]^{2}}$$

$$\overline{\mathbf{x}}_{n} = \frac{k_{p} [M]}{\mathbf{x} [f k_{d} k_{t}]^{1/2} [I]^{1/2}}$$

CHAIN TRANSFER

Chain transfer can occur to solvent, added agents, etc.

 $R':H + M_{x}^{\cdot} \longrightarrow M H_{x}^{+} R' \cdot r_{tr} = \frac{d[M \cdot]}{dt} = -k_{tr} [R':H][M \cdot]$

$$\frac{d[M \cdot]}{dt} = 2k_{td}[M^2 \cdot] + k_{tc}[M^2 \cdot] + k_{tr}[T][\cdot M]$$

Redrawn from the data of R.A.Gregg + F.R.Mayo, Faraday Soc. Discussions,2,328(1947)