VOIGT MODEL

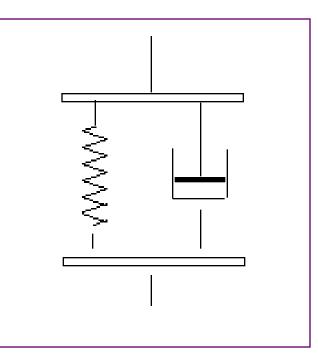
Maxwell mdel essentially assumes a uniform distribution Of stress.Now assume uniform distribution of strain -VOIGT MODEL

Picture representation ———

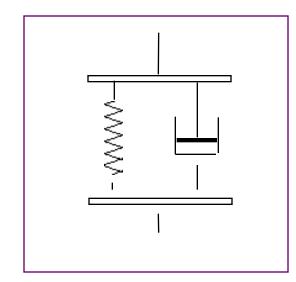
Equation

$$(t) = E(t) + \frac{d(t)}{dt}$$

(Strain in both elements of the model is the same and the total stress is the sum of the two contributions)



VOIGT MODEL – creep and stress relaxatio



Strain $\begin{array}{|c|c|c|} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ t_1 & t_2 & t \end{array}$

Gives a retarded elastic response but does not allow for "ideal" stress relaxation, in that the model cannot be "instantaneously" deformed to a given strain.

But in CREEP = constant

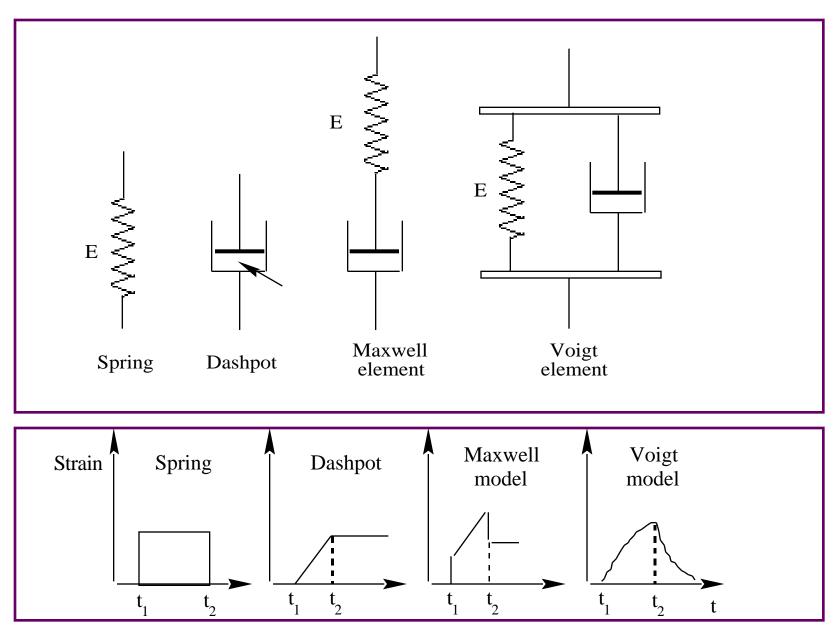
$$(t) = _{0} = E(t) + \frac{d(t)}{dt}$$

$$\frac{d(t)}{dt} + \frac{(t)}{t} = -0$$

$$(t) = -0 [1 - exp(-t_t)]$$

. - retardation time (/E)

SUMMARY



PROBLEMS WITH SIMPLE MODELS

•The maxwell model cannot account for a retarded elastic response

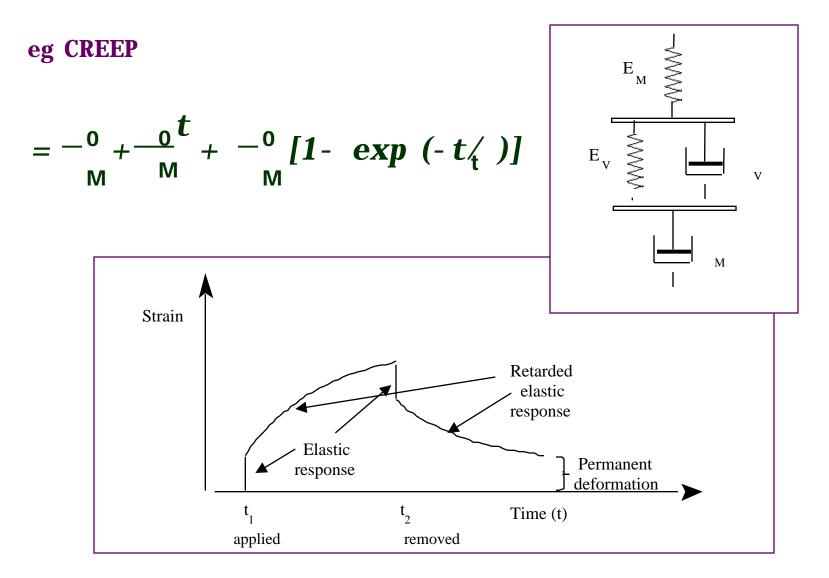
•The voigt model does not describe stress relaxation

•Both models are characterized by single relaxation times - a spectrum of relaxation times would provide a better description

NEXT - CONSIDER THE FIRST TWO PROBLEMS THEN - THE PROBLEM OF A SPECTRUM OF RELAXATION TIMES

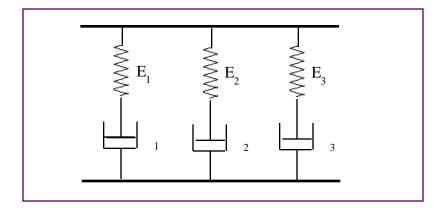
FOUR - PARAMETER MODEL

ELASTIC + VISCOUS FLOW + RETARDED ELASTIC



DISTRIBUTIONS OF RELAXATION AND RETARDATION TIMES The Maxwell - Wiechert Model

$$\frac{d}{dt} = -\frac{1}{1} + \frac{1}{1} \frac{d}{dt} 1$$
$$= -\frac{2}{2} + \frac{1}{2} \frac{d}{dt} 2$$
$$= -\frac{3}{3} + \frac{1}{3} \frac{d}{dt} 3$$



Consider stress relaxation

$$\frac{d}{dt} = 0$$

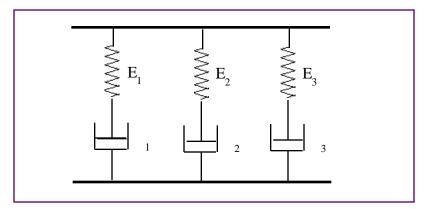
$$_{1} = \ _{0} \exp[-t/_{t1}] \\ _{2} = \ _{0} \exp[-t/_{t2}] \\ _{3} = \ _{0} \exp[-t/_{t3}]$$

DISTRIBUTIONS OF RELAXATION AND RETARDATION TIMES

Stress relaxation modulus

$$E(t) = (t) / 0$$

$$(t) = \frac{1}{1} + \frac{2}{2} + \frac{3}{3}$$



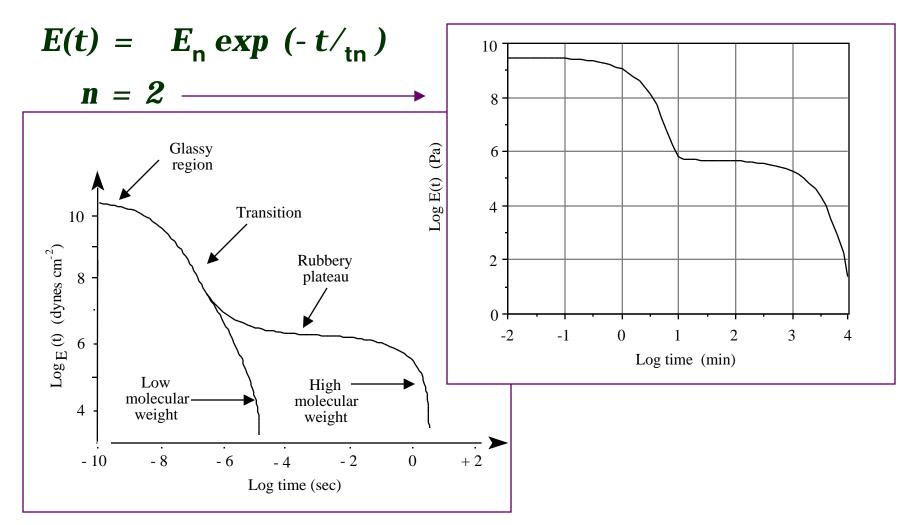
 $E(t) = \underbrace{0}_{0}^{1} \exp(-\frac{t}{0}) + \underbrace{0}_{0}^{2} \exp(-\frac{t}{0}) + \underbrace{0}_{0}^{3} \exp(-\frac{t}{0})$ Or, in general $E(t) = E_{n} \exp(-\frac{t}{t_{n}}) \text{ where } E_{n} = \underbrace{0}_{n}^{0}$

SIMILARLY, FOR CREEP COMPLIANCE COMBINE VOIGT ELEMENTS TO OBTAIN $D(t) = D \begin{bmatrix} 1 & ovn (-t \land t \end{bmatrix}$

$$D(t) = D_n [1 - exp(-t_{tn})]$$

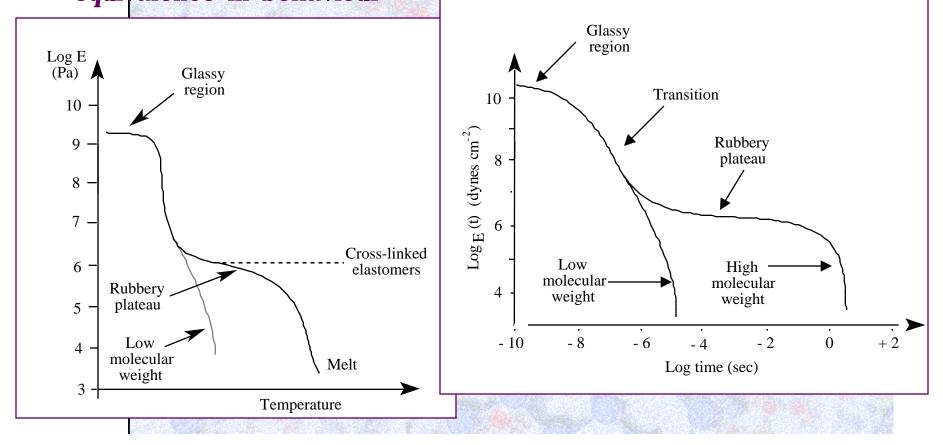
DISTRIBUTIONS OF RELAXATION AND RETARDATION TIMES

Example - The Maxwell - Wiechert Model with



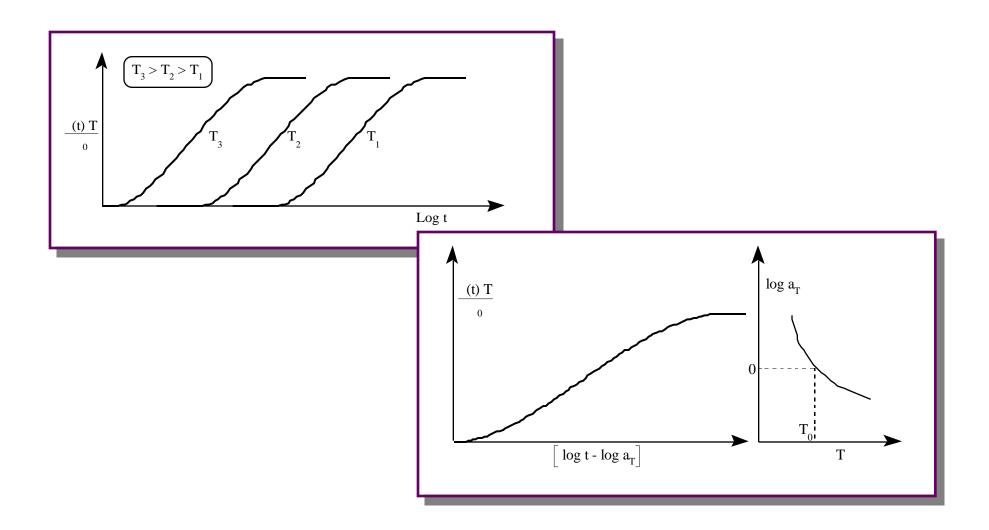
TIME - TEMPERATURE SUPERPOSITION PRINCIPLE

Recall that we have seen that there is a time - temperature equivalence in behaviour

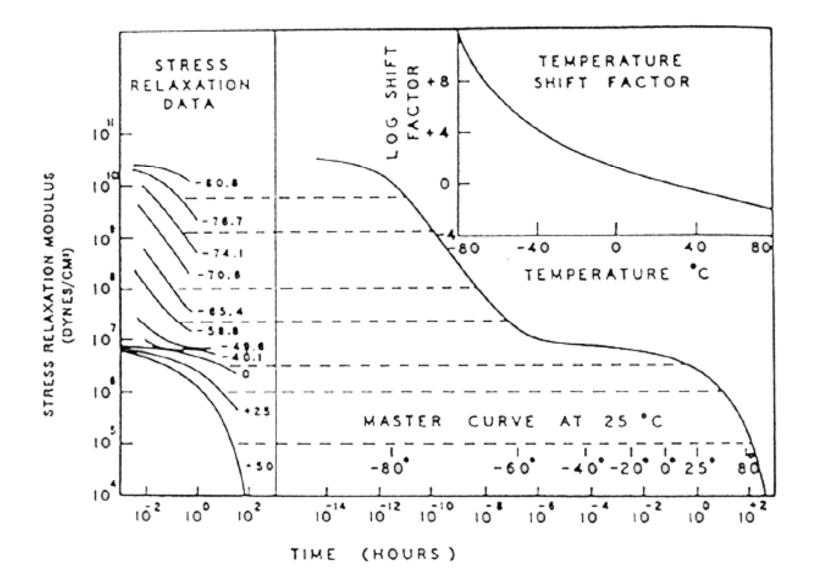


This can be expressed formally in terms of a suprposition principle

TIME TEMPERATURE SUPERPOSITION PRINCIPLE – creep



TIME TEMPERATURE SUPERPOSITION PRINCIPLE - stress relaxation



SIGNIFICANCE OF SHIFT FACTOR

What is the significance of the log scale for_T a , and what does this tell us about the temperature dependence of relaxation behaviour in amorphous polymers ? Consider stress relaxation:

$$E(t) = E_n \exp(-t/t)$$

Let a particular mode of relaxation have a characteristic time to at **T** , and a characteristic time at **T** . The **D**EFINE

n

$a_{-} = \frac{t1}{t}$	So that the exponential	<u>t</u>	<u>t</u>	
T t0	term can be written	t1	$a_{T t0}$	

Hence, taking logs

$$log (t/_{t1}) = log (t_{t0}) + log a$$

SIGNIFICANCE OF SHIFT FACTOR

$$log (t/_{t1}) = log (t_{t0}) + log_{ta}$$

•ie relaxation behaviour at one temperature can be superimposed on that at another by shifting an amount a_{T} along a log scale.

•BUT , real behaviour is characterized by a distribution of relaxation times and relaxation mechanisms vary and have different length scales as a function of temperature

•This implies that all the relaxation processes involved have (more or less) the same temperature dependence

RELAXATION PROCESSES ABOVE Tg - THE WLF EQUATION

From empirical observation

Log
$$a_T = \frac{-C_1 (T - T_s T)}{C_2 + (T - T_s T)}$$
 For $Tg > T < -Tg + {}^0100 C$

Originally thought that ζ and $_2C$ were universal constants, = 17.44 and 51.6, respectively, when T = Tg. Now known that these vary from polymer to polymer. Homework problem - show how the WLF equation can be obtained from the relationship of viscosity to free volume as expressed in the Doolittle equation

DYNAMICS OF POLYMER CHAINS

An advanced topic that we will not discuss in detail

