
VISCOELASTIC PROPERTIES OF
      AMORPHOUS POLYMERS
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RELAXATION IN POLYMERS

First consider a hypothetical isolated 
chain in space,then imagine stretching
 this chain instantaneously so that there 
is a new end - to - end distance.The 
distribution of bond angles (trans,
gauche,etc) changes to accomodate  
the conformations that are allowed 
by the new constraints on the ends.
Because it takes time for bond rotations
to occur,particularlywhen we also add in the viscous forces due to
neighbours,we say the chain RELAXES to the new state and the
relaxation is described by a characteristic time τt



   AMORPHOUS POLYMERS - THE FOUR 
REGIONS OF VISCOELASTIC BEHAVIOUR 
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GLASSY STATE - conformational
changes severely inhibited.

Tg REGION - cooperative motions
of segments now occur,but the
motions are sluggish ( a maximumin
tan δ curves are observed in DMA
experiments)

RUBBERY PLATEAU -     becomes
shorter,but still longer than the
time scale for disentanglement

tτ

TERMINAL FLOW - the time scale for disentanglement becomes
Shorter and the melt becomes more fluid like in its behaviour



   SEMI - CRYSTALLINE POLYMERS

•Motion in the amorphous domains
 constrained by crystallites

•Motions above Tg are often more
 complex,often involving coupled
 processes in the crystalline
 and amorphous domains

•Less easy to generalize - polymers
 often have to be considered individually
 - see DMA data opposite

Reproduced with permission from H. A. Flocke,
 Kolloid–Z. Z. Polym., 180, 188 (1962).



MECHANICAL AND THEORETICAL
MODELS OF VISCOELASTIC 

BEHAVIOUR

DEFINITIONS

      G(t) = _τ(t)
0

 γ

      J(t) =
 γ(t)_
τ0

      G(t) =        _1
J(t)

Relaxation modulus

Creep compliance

GOAL - relate G(t) and J(t) to relaxation behaviour.
We will only consider LINEAR MODELS 
ie if we double G(t) [or σ(t)],then γ(t) [or ε(t)] also 
increses by a factor of 2 (small loads and strains).



SIMPLE MODELS OF THE VISCOELASTIC 
BEHAVIOUR OF AMORPHOUS POLYMERS

Keep in mind that simple 
creep and recovery data for 
viscoelastic materials looks 
something like this
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SIMPLE MODELS OF THE VISCOELASTIC 
BEHAVIOUR OF AMORPHOUS POLYMERS

While stress relaxation data 
look something like this
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SIMPLE MODELS OF THE VISCOELASTIC 
BEHAVIOUR OF AMORPHOUS POLYMERS
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SIMPLE MODELS OF THE VISCOELASTIC 
BEHAVIOUR OF AMORPHOUS POLYMERS



STRAIN VS. TIME FOR SIMPLE
MODELS

DashpotSpring
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 =_dε
dt

_σ
η

_dσ
dt

_1
Ε

 +

MAXWELL MODEL

σ = Eε Maxwell started with Hooke’s law

Then allowed σ to vary with time  = _dε
dt

_dσ
dt Ε

Writing for a Newtonian fluid σ η = _dε
dt

Then assuming that the rate of strain
is simply a sum of these two contributions

Maxwell was interested in creep and stress relaxation and
developed a differential equation to describe these properties
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MAXWELL MODEL - creep and recovery

Strain

Time0 t

Strain

Time0 t

Recall that real viscoelastic
behaviour looks something
like this

Creep and
recovery

A picture representation 
of Maxwell’s equation

 =_dε
dt

_σ
η
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MAXWELL MODEL -stress relaxation

 =_dε
dt

_σ
η

_dσ
dt

_1
Ε +

 =_dε
dt  0

In a stress relaxation experiment

_
σ  =dσ _σ

η
dt

0σ  = σ  exp[-t/τ  ]t

_η
Εtτ  =

Hence

Where

Relaxation time
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MAXWELL MODEL -stress relaxation
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Maxwell model

Real data looks
something like 
this


