ENTANGLEMENTS AND THE ELASTIC PROPERTIES OF POLYMER MELTS

Depending upon the rate at which chains disentangle relative to the rate at which they stretch out, there is an elastic component to the behaviour of polmer melts. There are various consequences as a result of this.

MELT FRACTURE

Reproduced with permission from J. J. Benbow, R. N. Browne and E. R. Howells, *Coll. Intern. Rheol., Paris,* June-July 1960.

VISCOELASTICITY

If we stretch a crystalline solid, The energy is stored in the Chemical bonds If we apply a shear stress to A fluid, energy is dissipated In flow

VISCOELASTICITY

HOMER KNEW THAT THE FIRST THING TO DO ON GETTING YOUR CHARIOT OUT IN THE MORNING WAS TO PUT THE WHEELS BACK ON.

(TELEMACHUS, IN THE ODYSSEY, WOULD TIP HIS CHARIOT AGAINST A WALL)

ROBIN HOOD KNEW NEVER TO LEAVE HIS BOW STRUNG

CREEP AND STRESS RELAXATION

CREEP AND RECOVERY

STRESS RELAXATION

STRAIN vs. TIME PLOTS

DYNAMIC MECHANICAL ANALYSIS

Apply an oscillating tensile Or shear stress. Assume we get an oscillating Strain of the form

$$= \int_{0} \sin 2 ft = \int_{0} \sin t$$

Using Hooke's law

 $(t) = G_{0} sin t$

ie. FOR A PERFECT ELASTIC SOLID STRESS AND STRAIN ARE EXACTLY IN PHASE

FLUIDS

$$(t) = (t)$$
$$= \frac{d}{dt} \{ \int_{0} \sin t \}$$

$$(t) = \cos t$$

ie 90° out - of - phase

Viscoelastic solid - in-between ! ie a phase angle between $\overset{0}{0}$ and $\overset{0}{9}$ 0

VISCOELASTIC MATERIALS

Define a phase angle such that

$$(t) = {}_{0} sin(t +)$$
$$= {}_{0} sin t$$

Then obtain

$$(t) = (\cos) \sin t + (\sin) \cos t$$

Hence

$$(t) = [G'()] \sin t + G''() \cos t]$$

Where

STORAGE MODULUS	$G'() = -\frac{0}{0} \{ cos \}$	}	and	tan	= $\frac{G''()}{G'()}$
LOSS MODULUS	$G''() = -\frac{0}{0} \{sin$	}			

VISCOELASTIC MATERIALS – DMA

STORAGE MODULUS

LOSS MODULUS

$$G'() = -\frac{0}{0} \{ cos \}$$

$$G''() = -\frac{0}{0} \{ sin \}$$

$$tan = \frac{G''()}{G'()}$$

TIME TEMPERATURE EQUIVALENCE

MEASURE AT CONSTANT T

MEASURE AT CONSTANT

TEMPERATURE

SUMMARY - DMA

•In Dynamic Mechanical Analysis experiments two moduli Are measured, storage (G'()) and loss (G"()).

•We defined a factor
$$\tan = \frac{G''()}{G'()}$$

- •This shows a maximumwhen the storage modulus changes From a value charecteristic of rubbers to one charecteristic Of the glassy state
- •There is apparently **TIME TEMPERATURE EQUIVALENCE** The results appear simlar if we vary at constant T or if We vary T at constant

AMORPHOUS POLYMERS – RANGE OF VISCOELASTIV BEHAVIOUR

