MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL PROPERTIES OF SOLIDS

Shear

Hooke's law

= E

MECHANICAL AND RHEOLOGICAL PROPERTIES

RHEOLOGICAL PROPERTIES OF FLUIDS

OVERVIEW

POLYMERS TREATED AS SOLIDS

Strength Stiffness Toughness

POLYMERS TREATED AS FLUIDS

Viscosity of polymer melts Elastic properties of polymer melts !!!

VISCOELASTIC PROPERTIES

Creep Stress relaxation

↓

STRESSES AND STRAINS (or why you don't fall through the floor)

HOW DOES AN INANIMATE OBJECT SUPPORT A LOAD ?

HOOKE'S LAW

In 1676 hooke published "a decimate of the centesme of the inventions i intend to publish" (!!!) Included "the true theory of elasticity or springiness" ceiiinosssttuu As the extension, so the force

THERMODYNAMICS REVISTED

F = U - TS

MOLECULAR ORIGIN OF HOOKE'S LAW

COMPARISON TO EXPERIMENT

POLYDIACETYLENE SINGLE CRYSTAL

Hooke's law obeyed up to deformations $\sim 2\%$ Deviations beyond this could be due to defects as well as non linear terms in the force / extension equation

ELASTOMER NETWORK

Rubber networks obey hooke's law at low extensions, but not, perhaps surprizingly, at high strains (considering that deformation is reversible). The simplest theory of rubber elasticity gives

$$f = NkT(1 - 1/2)$$

but this is not that good.the semi - empirical Mooney - Rivlin equation provides a better fit

$$= 2 (C_1 + C_2 / 1) (1 - 1 / 1)$$

COMPARISON TO EXPERIMENT - POLYMERS

Once strains ~ 1% - 2% are reached, various types of deviations From ideal behavior are observed;

More on these later!

THE STIFFNESS OF MATERIALS

The stiffness of an object depends on its size and shape as Well as the material from which it is constructed. We are Interested in the inherent stiffness of materials and how They compare with one another

First define stress = force / unit area

$$= F/A$$

This in itself is a useful concept

gEBRICK 3"x 4" ; LOAD OF 200lbs $BRIDGE 20' x 5' ; LOCOMOTIVE \sim 100 TONS$ Stress = 16.67 lbs/sq. In. $Stress = \frac{100 \times 2,240}{5 \times 20 \times 144} = 15.6 lbs/sq in$

THE STIFFNESS OF MATERIALS

Now define strain ;

Aircraft with strain of 1.6 % in wings

MODULUS OF DRAWN POLYETHYLENE

YOUNG'S MODULUS

YOUNG ~ 1800 $\frac{\text{STRESS}}{\text{STRAIN}}$ = CONSTANT			
=E	MATERIAL	E (lbs/sq in)	
(AFTER COMING UP WITH THIS, HE GOT FIRED)	RUBBER	~0.001 x 10 ⁶	
	UNREINFORCED PLASTICS	$\sim 0.2 \times 10^{6}$	
	WOOD	~ 2.0×10^{6}	
	CONCRETE	~ 2.5×10^{6}	
	GLASS	~ 10.0 x 10 ⁶	
	STEEL	\sim 30.0 x 10 ⁶	
	DIAMOND	$\sim 170 \times 10^{-6}$	

TENSILE STRENGTH

Material	TS psi
Steel piano wire	450,000
High - tensile steel	225,000
Aluminium alloys	20,000 - 80,000
Titanium alloys	100,000 - 200,000
Wood (spruce), along grain	15,000
Wood (spruce), across grain	in 500
Ordinary glass	5,000 - 25,000
Ordinary brick	800
Ordinary cement	600
Nylon fiber	140,000
Kevlar 29 fiber	400,000

QUESTION USUALLY ASKED WHY IS ONE MATERIAL STRONGER THAN ANOTHER?

QUESTION SHOULD BE

WHY ISN'T ANY MATERIAL AS STRONG AS IT SHOULD BE?

HOW STRONG SHOULD MATERIALS BE?

GRIFFITHS; CALCULATED THE THEORETICAL STRENGTH OF GLASS TO BE ~ 1×10^6 p.s.i **MEASURED VALUES** ~ 25,000 p.s.i.

MATERIAL	THEORETICAL STRENGTH	MEASURED STRENGTH
STEEL	~5 x 10 p.s.i	~ 400,000 p.s.i (BEST)
POLYETHYLENE FIBERS	~ 25 GPa (~ 0.35 GPa TENSILE DRAWING) ~ 4 GPa (GEL SPUN)