Water Soluble Polymers with Tunable Temperature-Sensitivity: Solution Behavior

M. Rackaitis, K. Strawhecker, E. Manias*

Department of Materials Science & Engineering
The Pennsylvania State University
325-D Steidle Building, University Park, PA 16802

ABSTRACT

Water soluble polymers with tunable lower critical solution temperature (LCST) were designed and synthesized based on an ethyleneoxide/ethylene monomer (EO/EE). Polymers were synthesized using polycondensation reactions of difunctional m – EO and n – EE oligomers. Control of the monomer composition (m/n) allows for the tailoring of the hydrophobic/hydrophilic balance in the monomer and in the polymer. The cloud point follows linearly the balance of hydrophobic/hydrophilic interaction and can be tailored in the range of 7 – 70°C by varying the m/n composition and polymer type.

KEYWORDS

water soluble polymers, stimuli sensitive polymers, phase behavior, polyesters, polyamides


* address correspondence to: manias@psu.edu
INTRODUCTION

Controlled polymer solubility in water is of great interest, with promise of use in applications requiring smart/responsive materials, such as cell patterning \(^1,^2\) and smart/controlled drug delivery systems \(^3\). Temperature sensitive solubility usually originates from the existence of a lower critical solution temperature (LCST), beyond which the polymer becomes insoluble in water. Such behavior is typical for the polymers that form hydrogen bonds to water\(^4,^5,^6\).

Driven by the high promise for biomedical applications, polymers that exhibit a response in water at about 37°C are of particular interest. Taylor and Cerankowski \(^5\) predicted that LCST of a water soluble polymer can be varied by controlling balance of hydrophilic and hydrophobic segments in the polymer chain. However, to date most polymers studied are based on a single homopolymer (poly(N-isopropylacrylamide), PNIPAM), that exhibits LCST at 32°C \(^7\), and efforts to change its LCST mostly involved modifications through addition of hydrophobic branches \(^6,^7,^8\). These branched polymers exhibit cloud points (CP) that do not correlate with the hydrophobic/hydrophilic balance of the polymer \(^6\). This behavior originates from the branched molecular architecture of these materials, which results in a coil to micelle “phase transition”, rather than a polymer solution (LCST) phase transition. Bokias et al.\(^7\) showed that increasing the length of the hydrophobic side chains can shift the LCST of PNIPAM, but now the phase transition broadens and occurs over a wide temperature range. Virtanen et al.\(^8\), investigating PNIPAM modified with polyethylene oxide (PEO) grafts, also found the same broadening of phase transition, which they attributed to the collapsed aggregate formation—a micelle that consists of a PNIPAM/PEO core with a PEO shell. Such coil to micelle
transitions make it difficult to predict the behavior of branched-modified thermosensitive polymers, based on the balance of hydrophilic and hydrophobic molecular segments\(^6\), thus limiting dramatically the ability to design polymers with tailored temperature response in aqueous solutions.

A sharp LCST transition, that is determined by the hydrophobic/hydrophilic balance, dictates a linear polymer architecture where the hydrophobic and hydrophilic segments are not lumped together in blocks, which could facilitate the formation of “clusters” upon precipitation from solution. This is the driving idea for the present study, which aims to design water-soluble polymers with a controlled temperature response in aqueous solutions, and tailoring their phase separation through the balance of hydrophilic and hydrophobic segments. For this purpose, we synthesized polymers based on monomers with a controlled stoichiometry of ethylene/(ethylene oxide), with the intention to tailor the polymer LCST by controlling the hydrophobic/hydrophilic balance within the monomer. We herein report the first experimental results on the solubility phase diagram and the LCST dependence on the monomer composition.

**MONOMER DESIGN AND POLYMER SYNTHESIS**

Probably the most studied\(^4,9-11\) biocompatible polymer that exhibits LCST behavior in water is polyethylene oxide (PEO). However, PEO has an LCST that ranges between 100 and 150 °C, depending on molecular weight\(^9\), a range of temperatures that limits its use as a thermoresponsive polymer for most aqueous applications. A polymer that includes ethylene oxide parts and hydrophobic parts (e.g. ethylene, EE), should exhibit a phase
transition at lower temperatures than the PEO LCST. Where a linear polymer is used – made of short enough EO and EE segments to prevent micelle formation– its precipitation from aqueous solution can be envisioned to be a sharp LCST transition. Moreover, given the PEO and PE phase behavior in water, a linear alternating EO-EE copolymer sequence across the polymer should lead to an LCST determined by the hydrophobic/hydrophilic balance, in absence of intra / inter molecular hydrogen bonding. This approach parallels that of Nagasaki et al.\textsuperscript{12} who tailored the LCST of poly(dimethylsiloxy-co-ethyleneoxide) rubbers by varying the siloxane content of the polymer. The advantages of our approach are that the resulting polymers are fully “carbon-based”, it involves a more versatile chemistry that can result in a large range of polymers and, as it will be discussed later, polymers can be made far less susceptible to hydrolysis. Along these lines, we synthesized a series of polymers with variable EE/EO ratio in the monomer that have the following structure:

\begin{equation}
\text{poly}\left\{\left(\text{O-CH}_2\text{-CH}_2\right)_{m}\text{O-C-}\left(\text{CH}_2\text{-CH}_2\right)_{n}\text{C-}\right\}
\end{equation}

\begin{equation}
\text{poly}\left\{\text{CH}_2\left\{\text{CH}_2\text{-O-CH}_2\right\}_m\text{O-C-}\left(\text{CH}_2\text{-CH}_2\right)_{n}\text{O-C-}\right\}
\end{equation}

The synthesis of polymers (1) and (2) involved simple polycondensation reactions: For (1) poly(m)ethylene glycol (m=4) was reacted with dicarboxychloride poly(n)ethylene (n=3, suberoyl chloride). For (2) $\alpha,\omega$–bis(carboxymethyl)-poly(m)ethyleneoxides (m=5 and 13) were chlorinated and subsequently reacted with $\alpha,\omega$–dil–poly(n)ethylenes (n=3 and 6). In both cases the dicarboxychlorides were dissolved in THF and half of the stoichiometric amount of diol was added dissolved in THF. The reaction was carried out at 150$^\circ$C in presence of NaOH, while THF was refluxed. The remaining part of the diol
was added drop-wise from a THF solution over the time of 48 hours, so as to keep polydispersities small\textsuperscript{13}. After the reaction, THF was evaporated and the residue was dissolved in absolute ethanol and filtered; the polymers were recovered from the latter solution after slowly distilling (~50°C) the ethanol away. The combinations of all \( m \) and \( n \) above, resulted in a series of five polymers with a systematic variation of \( m/n \), which were all water-soluble at room temperature except for the most hydrophobic, \textit{i.e.} polymer (2) with \( m=5 \) and \( n=6 \).

RESULTS AND DISCUSSION

\textbf{Solubility Phase Diagram.} In order to get some clues on the phase transition behavior of our polymers, the phase diagram of one representative polyester (\( m/n=13/6 \)) was explored, and its phase behavior was compared against the phase diagram of PEO (Fig.1a). In absence of experimental data for the PEO binodal at comparable molecular weight as our \( m/n=13/6 \) polyester, the calculated phase diagram is shown in fig. 1a for \( M_w=600K \) (calculated in the same manner and using the same parameters as described in \textsuperscript{14}). In figure 1b the experimental cloud point measurement curves are also provided, as a function of the solution concentration. From the experimental data it is obvious that the synthesized polyester has very sharp solubility phase transition, even at high temperatures. This suggests that the collapsed coils do not form micelles, as is the case with branched or random/block copolymers \textsuperscript{6}, and in contrast to the poly(dimethylsiloxyo-co-ethyleneoxide) behavior they are less susceptible to hydrolysis \textsuperscript{12}. The overall solubility phase diagram is similar to the calculated neat PEO phase diagram but at
considerably lower temperatures, as expected by the addition of the hydrophobic ethylene part in the monomer. The sharpness of the phase separation and the similarity to the neat PEO phase diagram suggest that our polymer’s solubility is governed by the LCST behavior of the ethyleneoxide.

**Effect of hydrophobic/hydrophilic balance (n/m).** The ethylene part of the monomer does make the polymer less soluble in water, but its van der Walls only interactions with water should facilitate an LCST reduction without significant influence to the overall phase diagram. If this is the case, the phase transition should occur when:

\[
\left(\frac{\partial^2 S^{\text{ex}}}{\partial \phi_{\text{pol}}^2}\right)_{T,p} - \left(\frac{\partial^2 H^{\text{ex}}}{\partial \phi_{\text{pol}}^2}\right)_{T,p} = \frac{RT}{\phi_{\text{pol}} \cdot \phi_{\text{water}}} \tag{3}
\]

where \(S^{\text{ex}}\) and \(H^{\text{ex}}\) are the excess entropy and enthalpy, \(\phi_{\text{pol}}\) and \(\phi_{\text{water}}\) are the mole fractions of polymer and water. The phase separation occurs at the temperature where the enthalpy of hydrophobic interactions is balanced by the enthalpy of hydrogen bonding, beyond that temperature the hydrogen bonds break and the solution demixes. In a first approximation, this enthalpy balance can be expressed by the ratio of hydrophobic/hydrophilic (H-bonding) interactions in the polymer, or in our case by the balance of hydrophobic/H-bonding interactions within the monomer (\(\Omega\)):

\[
\frac{\text{hydrophobic interaction}}{\text{hydrophilic interaction}} \propto \frac{(\# \text{ ethylene}) \varepsilon}{(\# \text{ EO})\Delta H^{\text{EO}}_{\text{H-bond}} + (\# \text{ ester})\Delta H^{\text{ester}}_{\text{H-bond}}} \equiv \Omega \tag{4}
\]

where \(\varepsilon\) is the hydrophobic interaction enthalpy of an ethylene group, \(\Delta H^{\text{EO/ester}}_{\text{H-bond}}\) is the hydrogen bonding enthalpies for an ethyleneoxide and an ester group. As defined in (4),
Ω can be used to quantify the excess enthalpy of solute/solvent interaction per monomer. The phase transition temperature of high molecular weight polymers made up of such monomers, should also follow the same dependence on the ratio between the enthalpy of hydrophobic EE groups and the enthalpy of hydrogen bonding (EO and ester) groups in the monomer (Ω).

In figure 2 we summarize all the cloud point temperatures as a function of Ω/ε, measured for all monomer compositions at 1 wt % polymer solution. For the estimation of Ω the number of EO and EE units are specified by the monomer selection, and the H-bonding enthalpies are well quantified in the literature e.g. (the value of the hydrophobic interaction energy ε of the ethylene groups is not known as precisely, but since it is common for all polymers it can be scaled out in Ω/ε). From figure 2 it is clear that the cloud point temperature depends linearly on the hydrophobic/hydrophilic balance, as predicted theoretically, and by tuning the stoichiometry of the monomer we could span a temperature range from 150°C to 500°C for the (1) and (2) polyesters. In addition, since this should be a general behavior we further expanded this series of ester polymers to the comparable series of amides (m=13 or 5, and n= 3 or 5):

\[
\text{poly}\left\{\text{CH}_2\left\{\text{CH}_2-\text{O-CH}_2\right\}_m\text{CH}_2\text{C}-\text{N}-\left\{\text{CH}_2-\text{CH}_2\right\}_n\text{N-C}\right\}
\]

(5)

and also to linear polyamides with a cyclo-aliphatic hydrophobic group:

\[
\text{poly}\left\{\text{CH}_2\left\{\text{CH}_2-\text{O-CH}_2\right\}_m\text{CH}_2\text{C}-\text{N}-\text{CH}_2\text{CH}_2\text{N-C}\right\}
\]

(6)
The cloud point temperatures for five of the above amides are also shown in figure 2 (with the obvious correction in $\Omega/\varepsilon$ for the enthalpy of an amide H-bond instead of an ester). As expected, the polyamide cloud points appear at higher temperatures in comparison with the respective polyesters (since the amide groups can hydrogen bond to water more strongly than the esters), and the cloud point temperature dependence on $\Omega/\varepsilon$ for the polyamides (5) is parallel to the polyester line (since the phase separation is controlled by the ethyleneoxide/ethylene parts of the monomer, which remain the same). The polyamides of structure (6) also showed a similar $\Omega/\varepsilon$ dependence, however addition of their cloud point temperatures to the fig. 2 plot necessitates the evaluation of a “relative hydrophobicity” of the methyl-dicyclohexane group compared to the ethylene group (since $\varepsilon$ corresponds to the hydrophobic interaction of an ethylene). A relative value of 4 places the polyamides (6) in the same line as the polyamides (5), as estimated and discussed elsewhere 16.

With the combined polyester/polyamide series of alternating copolymers, it is possible to tune the temperature response of these polymers in the range of 7 to 70°C, almost the whole range of temperatures relevant to water at ambient pressure, by simple tailoring of the hydrophobic/hydrophilic balance in the monomer. Given the control of the phase separation by the monomer stoichiometry, we believe that the synthesized temperature-sensitive polymers can be a class of materials with high promise for applications in smart/responsive biomedical systems.
CONCLUSIONS

A series of linear polymers with a systematically varied hydrophobic/hydrophilic balance in their monomer was synthesized and their water solution behavior was explored. Simple scaling arguments show that these temperature responsive polymers obey a linear dependence of the transition temperature on the monomeric hydrophobic/hydrophilic balance. By tailoring the monomer stoichiometry (using short ethyleneoxide and ethylene units connected by ester or amide groups) we were able to achieve transition temperatures from 7 to 70°C in water at ambient pressures.

EXPERIMENTAL

All reagents were purchased from Sigma-Aldrich in purum grade, spectroscopic grade THF was purchased from VWR. The water-soluble polymers were characterized by aqueous gel permeation chromatography (GPC) and their characteristics are given in the table 1. Aqueous GPC measurements were carried out on a Polymer Laboratories GPC, bearing PL Aquagel-OH columns, and calibrated by PEO standards. Cloud point (CP) measurements were carried out in a water heat bath, wherein a 2 ml sample-vial holding the polymer aqueous solutions was immersed. Temperature was varied at a heating/cooling rate of 0.2 °C/min, and the solution temperature was measured inside the sample vial by a thermocouple. CP was determined by monitoring the transmitted light signal of a red (650 nm) semiconductor laser (2mW) through a Metrological photodetector with a digital indicator (accuracy 1µW).
REFERENCES

FIGURE & TABLE CAPTIONS

**Table 1.** Molecular weight characterization of the (1) and (2) polyesters by aqueous GPC.

**Figure 1.** (a) Comparison of the solubility phase diagrams for PEO and for the 13/6 polyester; the dotted line is the PEO bimodal shifted by 72°C. (b) Experimental turbidity data of the 13/6 polyester for various solution concentrations.

**Figure 2.** Experimental cloud point temperatures as a function of the monomeric hydrophobic/ hydrophilic balance. Several monomer stoichiometries (m/n) are shown, for monomers composed of m-ethylenoxide and n-ethylene parts, connected by ester and amide groups.

**TABLE(S)**

<table>
<thead>
<tr>
<th>Polyester (m/n)</th>
<th>M w (g/mol)</th>
<th>M w/ M n</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 / 3</td>
<td>377,860</td>
<td>3.04</td>
</tr>
<tr>
<td>13 / 6</td>
<td>575,050</td>
<td>1.33</td>
</tr>
<tr>
<td>5 / 3</td>
<td>247,080</td>
<td>2.06</td>
</tr>
<tr>
<td>4 / 3</td>
<td>300,510</td>
<td>1.83</td>
</tr>
</tbody>
</table>
Fig. 1. (a) Comparison of the solubility phase diagrams for PEO and for the 13/6 polyester; the dotted line is the PEO bimodal shifted by 72°C. (b) Experimental turbidity data of the 13/6 polyester for various solution concentrations.
**Fig. 2.** Experimental cloud point temperatures as a function of the monomeric hydrophobic/ hydrophilic balance. Several monomer stoichiometries (m/n) are shown, for monomers composed of m-ethylenoxide and n-ethylene parts, connected by ester and amide groups.