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Introduction
Intercalation of polymers in layered silicate hosts is a promising way to

synthesize polymer nanocomposites, an attractive set of organic-inorganic
hybrid materials because of their high technological potential [1].  Of special
interest to this work are the intercalated nanocomposites, in which in which a
1.5-2.0 nm polymer film is intercalated between parallel inorganic layers
resulting in a well ordered multilayer with a repeat distance of a few
nanometers. The intercalated polymer/silicate nanocomposites offer a unique
avenue for studying the static and dynamic behavior of small molecules and
macromolecules in nanoscopic confinements: one can utilize conventional
analytical techniques (e.g., thermal analysis, NMR, dielectric spectroscopy,
inelastic neutron scattering, rheology) on macroscopic samples and,
nevertheless, study the properties of 1-3 nm thick polymer films [2]

The dynamics of small- and macromolecules in thin films or in pores has
been attracting the scientific interest.  For supported films, the effective glass
transition temperature (T g ) decreases [6] with decreasing film thickness h
except for strongly attractive substrates [7c].  For freely standing films, the
effects are strong [8]: for h< Rg , T g  decreases linearly with decreasing h
( Rg  is the bulk gyration radius) with as much as 70ϊC reduction for h≈ Rg .
The existence of a thin (a few nm) “interphase” layer (more mobile for neutral
or free surfaces and less mobile near an attractive wall) affecting the  T g  and
the segmental dynamics has been proposed [6,7].  The shape of the relaxation
function for freely standing films is found similar to that in the bulk and the
temperature (T ) dependence of the relaxation times is accounted for by a
simple T g -shift [5c].  For small molecules confined within pores, T g
decreases with decreasing pore size [8], whereas slightly slower [9] or slightly
faster [10,6] local dynamics in the pores is observed as well as extra
broadening of the relaxation function [11]; the issue of a cooperativity-length
determining the dynamic glass transition has been raised [6,9-11].  Recently,
very fast dynamics is observed under severe confinement [11].

In this report, a dielectric spectroscopy investigation is presented aiming
to probe the role of nano-confinement on the segmental motion of
poly(methyl phenyl siloxane) (PMPS) utilizing intercalated polymer/silicate
nanocomposites with 1.5-2.0 nm thin PMPS films confined between with
organically-modified parallel silicate layers.  A relaxation mode much faster
than the bulk α -relaxation is consistently observed with a weak T
dependence.  This should be attributed either to the restrictions placed by the
interlayer spacing on the cooperative volume of the α -relaxation or to the
dominant contribution of more mobile interphase regions.

Experimental
Organically modified layered silicates were prepared by a cation

exchange reaction between the layered silicate hosts and excess dioctadecyl-
dimethyl-ammonium bromide (to render the originally hydrophilic silicate
surface organophilic).  Hybrids were prepared by mixing at ~60ϊC under
ultrasonication dry organosilicate and PMPS (Mw=2600, Mw/Mn=1.20, T g =
223K) of various concentrations in order to span the range from starved to just
over full galleries.  The hybrids as well as the silicates were characterized by
x-ray diffraction in order to determine the interlayer spacing (Table 1).
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Table 1.  Sample Characteristics
Code Silicate Polymer wt%

Polymer
d100

spacing
H1 2C18-HT - - 23 ¹
M2 2C18-MMT - - 25 ¹

15% 2C18-HT PMPS 15 33 ¹ 3

25% 2C18-MMT PMPS 25 36 ¹
1  H: dimethyl-dioctadecyl-ammonium modified hectorite;  2  M: dimethyl-dioctadecyl-
ammonium modified montmorillonite;  3  A weak diffraction peak at 23 ¹ d-spacing
indicates the existence of non-intercalated silicates (polymer-starved system)

Dielectric spectroscopy, DS, was used to investigate the collective
segmental dynamics of PMPS in the frequency range 10-2 to 107 Hz (Solatron-
Schlumberger frequency response analyzer FRA 1260).  The measured
complex dielectric permitivity   ε

*(ω) = ′ ε (ω) − i ′ ′ ε (ω)  is given by the one-
sided Fourier transform of the time derivative of the dipole-dipole correlation
function C( t ); for non-zero dipole moment perpendicular to the chain
backbone, C( t ) probes local motions.  The sample was pressed in form of a
pellet and was residing between two gold-plated stainless steel electrodes
(diameter 20 mm) in a cryostat with its T  controlled (±0.1ϊC) via a nitrogen
gas jet heating system with a Novocontrol Quatro controller.  The
experimental  ′ ′ ε (ω )  were inverted [12] in order to determine the distribution
of relaxation times ˜ F ( lnτ )  without any a priori assumption of the form of the
relaxation function but only of a superposition of Debye processes.

Results and Discussion
Fig. 1 shows the dielectric loss, ′ ′ ε (ω ) , versus frequency for the 25%

PMPS/M together with that for the organosilicate M at 193 K (below the bulk
T g ).  The silicate spectra are quite broad and complicated over the whole  T -
range but their contribution can be subtracted from the data of the composites
(Fig. 1).  The resulting “net-loss” data correspond to the reorientational
motion of PMPS confined within the galleries.  A very fast process dominates
the spectra, it is observed at T ’s much lower than bulk-PMPS T g  and
exhibits a weaker T -dependence than that of the bulk-PMPS α -relaxation;
such process is not observed in neat PMPS or in neat silicates. The line in Fig.
1 is the fit to the net-loss data in order to determine the distribution spectra
˜ F ( lnτ )  (inset); the most probable relaxation times correspond to the maxima

of ˜ F ( lnτ ) .  Besides the fast process, a weak slower one (exhibiting a weak
T -dependence, too) is also evident as a shoulder in the net-loss data.  This
behavior is observed for the 25% PMPS/M for 173<T <213 K At higher T ’s,
a process with very weak amplitude which superimposes on the neat-PMPS
α -relaxation is also observed (not shown), which corresponds to minute
PMPS amounts not intercalated within the galleries.

Fig. 2 shows an Arrhenius plot of the most probable relaxation times of
the processes associated with PMPS for the 25% PMPS/M. The slow process
(bulk-PMPS like) is similarly evident for all compositions investigated with
its dielectric strength very small for the apparently starved 15% PMPS/H.
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Figure 1. ′ ′ ε (ω )  vs. frequency for silicate M (∆), the 25% PMPS/M
composite (◊), and the difference spectrum (∇ ) at 193K.  Inset: ˜ F ( lnτ )  from
the inversion of the net loss spectrum.
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Figure 2. Arrhenius plot of the relaxation times associated with bulk-like
PMPS (slow), confined PMPS (fast), and the intermediate process (shoulder in
Fig. 2) for the 25% PMPS/M . (___): bulk PMPS.  (---): VFT fit to the data.

The intermediate process appears in the same range of times with one of the
two processes observed for the bare M organosilicate (possibly related to
orientational motions of the surfactant). The fast process due to the confined
PMPS shows the very weak T -dependence in all cases.  The dynamics
appears to eventually merge with that for bulk PMPS at high T ’s, whereas at
228 K (near the bulk   T g ) it is by 6 decades faster.  Analysis of the
temperature dependence of the fast process with the Vogel-Fulcher-Tamman
(VFT) equation, − logτ = −logτ0 − B / T − T0( ) , leads to a the Vogel
temperature     T0 =93±2 K, which is ~100 K lower than T0,bulk =195±2 K, and
to B =962±20 K (all data but the 15%), much different from that for bulk
PMPS (    Bbulk =440±30 K).  The fragility parameters,     D = B /T0 , of 10.3
(confined) and 2.3 (bulk) indicate that the confinement influences the
landscape of the potential for conformational rearrangement.  The data in Fig.
2 cannot be superimposed when plotted vs. 1 / T − T0( ) , i.e., a simple T0 -
shift is not sufficient to account for the behavior, in disagreement with the
freely standing films data [5c].
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Figure 3.  Normalized net dielectric loss ′ ′ ε (ω) / ′ ′ ε max for the 25% PMPS/M
vs. reduced frequency F / Fmax for the fast process of Fig. 1 together with the
bulk-PMPS α -relaxation at 233K (line).

The shape of the relaxation function is an important characteristic.  Fig.
3 shows the normalized net loss ′ ′ ε (ω) / ′ ′ ε max for the fast process of the 25%
PMPS/M  vs. reduced frequency together with that of bulk-PMPS α -process.
The shape of the loss data is only a weak function of T  and apparently not
very different from that in bulk, which is insensitive to T  and slightly broader
at high frequencies; the high-frequency slopes are -0.50 (confined) and -0.37
(bulk); the shoulder at low frequencies complicates the slope comparison.
The shape-similarity agrees with the behavior of freely standing films [5c] but
not with that of small molecules within pores [11].

The existence of such fast dynamics within the galleries should be
discussed.  The argument of a characteristic length scale ξ  of cooperatively
rearranging regions has been invoked in studies of low-molecular-weight
glass-formers.  For salol confined in nanopores (2.5, 5.0, and 7.5 nm), the
slightly faster dynamics within the pores lead to an estimation of ξ ≅ 7 nm
near the calorimetric T g  [10].  The effective confinement in that case was
much less than the one herein; here the interlayer spacing  d  available to the
polymer chain is about 1.5-2.0 nm, which is of the order of a few statistical
segment lengths of PMPS.  Such severe confinement was recently
investigated [11] for ethylene glycol (EG) confined to zeolitic hosts.  DS
together with computer simulations revealed that, when at least six EG
molecules were able to rearrange cooperatively in the pores, bulk-like
behavior was obtained; however, when the confinement was even stronger,
the dynamics of the EG molecules was dramatically faster and exhibited an
Arrhenius T -dependence. Within the cooperativity argument one may think
that at very high temperatures, ξ  is smaller than d ; thus, no difference can be
expected between bulk and confined PMPS.  As T  decreases, the dynamics
deviate from an Arrhenius T -dependence at the onset of cooperativity.  In the
bulk, ξ  increases unhindered whereas within the galleries the increase of ξ
is limited by d .  Thus, bulk dynamics can be increasingly retarded compared
to that within the galleries.  The effects of the interplay between ξ  and d  on
the α -dynamics has recently been considered [6b]; for d  smaller than the
nominal ξ , faster dynamics is expected as   d  decreases.

The effects on dynamics of the perturbation in the chain structure /
orientation within an “interphase” next to a wall may alternatively be
considered.  Simulations show that chains adopt a preferentially parallel
configuration near a wall with oscillations in the monomer density profile.
These lead to a dynamic anisotropy with enhanced parallel and reduced
perpendicular monomeric-mobilities extending over distances which increase
with supercooling in excess of the chain end-to-end distance; fitting the
mobilities to a VFT equation results in the same T0  but different  B ’s [7].
Under severe confinement, this interphase is anticipated to extend over the
whole film thus leading to a fast relaxation.  Variation of the effective
relaxation times across a thin film has also been proposed in order to explain
the fast dynamics in both thin films and porous media [6b,8,11].

Concluding Remarks
Dielectric Relaxation Spectroscopy has been utilized to probe local

dynamics  in a series of nanocomposites consisting of PMPS intercalated in
organically modified silicates. X-ray diffraction showed that PMPS is
confined within 1.5-2.0 nm. The effect of confinement is directly reflected on
the local reorientational dynamics, as evidenced by the observation of a new
mode much faster than the segmental α -relaxation of the bulk polymer and
characterized by a much weaker temperature dependence.  Interpretation of
the observed behavior in terms of the current views on local dynamics in
confinement is discussed; the data qualitatively support the cooperativity
arguments without, however, being able to exclude the layering idea.
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