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INTRODUCTION

Controlled polymer solubility in water is of great inter-
est, with promise of use in applications requiring
smart/responsive materials such as sensors and actua-
tors, cell patterning,’? and smart/controlled drug-de-
livery systems.® Temperature-sensitive solubility usu-
ally originates from the existence of a lower critical
solution temperature (LCST) beyond which the poly-
mer becomes insoluble in water. Such behavior is typ-
ical for the polymers that form hydrogen bonds to
water.*~¢

Driven by the high promise for biomedical applica-
tions, polymers that exhibit a response in water at
about 37 °C are of particular interest. Taylor and Cer-
ankowski® predicted that LCST of a water-soluble poly-
mer can be varied by controlling the balance of hydro-
philic and hydrophobic segments in the polymer chain.
However, most polymers that have been examined are
based on a single homopolymer [poly(/N-isopropylacryl-
amide), PNIPAM] that exhibits LCST at 32 °C,” and
efforts to change its LCST mostly involved modifica-
tions through the addition of hydrophobic branches.®~®
These branched polymers exhibit cloud points (CPs)
that do not correlate with the hydrophobic/hydrophilic
balance of the polymer.® This behavior originates from
the branched molecular architecture of these materials
that results in a coil to micelle “phase transition”
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rather than a polymer solution (LCST) phase transi-
tion. Bokias et al.” showed that increasing the length of
the hydrophobic side chains can shift the LCST of PNI-
PAM, but now the phase transition broadens and oc-
curs over a wide temperature range. Virtanen et al.,®
who investigated PNITPAM modified with poly(ethylene
oxide) (PEO) grafts, also found the same broadening of
phase transition that they attributed to the collapsed
aggregate formation—a micelle that consists of a PNI-
PAM/PEO core with a PEO shell. Such coil-to-micelle
transitions make it difficult to predict the behavior of
branched-modified thermosensitive polymers on the
basis of the balance of hydrophilic and hydrophobic
molecular segments,® thus limiting dramatically the
ability to design polymers with tailored temperature
response in aqueous solutions.

A sharp LCST transition that is determined by the
hydrophobic/hydrophilic balance dictates a linear poly-
mer architecture where the hydrophobic and hydro-
philic segments are not lumped together in blocks,
which could facilitate the formation of collapsed poly-
mers upon precipitation from solution. This is the driv-
ing force for this study that aims to design water-
soluble polymers with a controlled temperature re-
sponse in aqueous solutions and tailor their phase
separation through the balance of hydrophilic and hy-
drophobic segments. For this purpose, we synthesized
polymers on the basis of monomers with a controlled
stoichiometry of ethylene/(ethylene oxide) with the in-
tention to tailor the polymer LCST by controlling the
hydrophobic/hydrophilic balance within the monomer.
We report the first experimental results on the solubil-
ity phase diagram and the LCST dependence of the
monomer composition.
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MONOMER DESIGN AND POLYMER SYNTHESIS

Probably the most investigated*®~'! biocompatible
polymer that exhibits LCST behavior in water is PEO.
However, aqueous PEO solutions have an LCST that
ranges from 100 to 150 °C depending on molecular
weight,” a range of temperatures that limits its use as
a thermoresponsive polymer for most aqueous applica-
tions. A polymer that includes ethylene oxide (EO)
parts and hydrophobic parts [e.g., ethylene (EE)]
should exhibit a phase transition at lower tempera-
tures than the PEO LCST. Where a linear polymer is
used—made of short-enough EO and EE segments to
prevent micelle formation—its precipitation from aque-
ous solution can be envisioned as a sharp LCST tran-

sition. Moreover, given the PEO and PE phase behavior
in water, a linear-alternating EO-EE copolymer sequence
across the polymer should lead to an LCST determined by
the hydrophobic/hydrophilic balance, (in the absence of
intra- and intermolecular hydrogen bonding). This ap-
proach parallels that of Nagasaki et al.'® who tailored the
LCST of poly(dimethylsiloxy-co-ethyleneoxide) rubbers
by varying the siloxane content of the polymer. The ad-
vantages of our approach are twofold. First, the resulting
polymers are fully “carbon based;” this involves a more
versatile chemistry that can allows for a large range of
polymers. Second, the polymers can be made far less
susceptible to hydrolysis. Along these lines, we synthe-
sized a series of polymers with a variable EE/EO ratio in
the monomer that have the following structure:
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The synthesis of polymers 1 and 2 involved simple
polycondensation reactions. For 1 poly(m)ethylene gly-
col (m = 4) was reacted with dicarboxychloride poly-
(n)ethylene (n = 3, suberoyl chloride). For 2 «,w-
bis(carboxymethyl)-poly(m)ethyleneoxides (m = 5 and
13) were chlorinated and subsequently reacted with
a,w-diol-poly(n)ethylenes (n = 3 and 6). For both reac-
tions, the dicarboxychlorides were dissolved in tetrahy-
drofuran (THF), and half of the stoichiometric amount
of diol dissolved in THF was added. The remaining part
of the diol was added dropwise from a THF solution
over 48 h to keep polydispersities small.’® The reaction
was carried out at 150 °C in the presence of NaOH,
whereas THF was refluxed. After the reaction, THF
was evaporated, and the residue was dissolved in ab-
solute ethanol and filtered; the polymers were recov-
ered from the latter solution after slowly distilling (at
about 50 °C) the ethanol away. The combinations of all
preceding m and n resulted in a series of five polymers
with a systematic variation of m/n, which were all
water soluble at room temperature except for the most
hydrophobic, that is, polymer 2 with m = 5 and n = 6.

RESULTS AND DISCUSSION
Solubility Phase Diagram

To get some clues on the phase-transition behavior of
our polymers, the phase diagram of one representative
polyester (m/n = 13/6) is shown in Figure 1, and its
phase behavior is compared against the phase diagram
of pure PEO [Fig. 1(a)l. In the absence of experimental
data for the PEO binodal, at comparable molecular
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Figure 1. (a) Comparison of the solubility phase dia-
grams for PEO and for the 13/6 polyester; the dotted
line is the PEO bimodal shifted by 72 °C. (b) Experi-
mental turbidity data of the 13/6 polyester for various
solution concentrations.



weight as our m/n = 13/6 polyester, the calculated
phase diagram is given in Fig. 1(a) for weight-average
molecular weight M, = 600 K (calculated in the same
manner and using the same parameters as described in
the literature®*). In Figure 1(b) the experimental cloud
point measurement curves are also provided as a func-
tion of the solution concentration. From the experimen-
tal data it is obvious that the synthesized polyester has
very sharp solubility phase transition, even at high
temperatures [Fig. 1(b)]l. This suggests that the col-
lapsed coils do not form micelles, as is the case with
branched or random/block copolymers,® and in contrast
to the poly(dimethylsiloxy-co-ethyleneoxide) behavior
they are less susceptible to hydrolysis.'?> The overall
solubility phase diagram is similar to the calculated
neat PEO phase diagram but at considerably lower
temperatures, as expected by the addition of the hydro-
phobic ethylene part in the monomer. The sharpness of
the phase separation and the similarity to the neat
PEO phase diagram suggest that our polymer’s solubil-
ity is governed by the LCST behavior of EO.

Effect of Hydrophobic/Hydrophilic Balance (n/m)

The ethylene part of the monomer does make the poly-
mer less soluble in water, but its van der Waals-only
interactions with water should facilitate an LCST re-
duction without significant influence on the overall
phase diagram. If this is the case, the phase transition
should occur when®

( aZSeX> (aQHeX) RT 3
ad)]zgol T,p ad)}zml Tp d)pol . (bwater ( )
where S and H** are the excess entropy and enthalpy,
respectively; and ¢,,,; and ¢y, are the mole fractions
of polymer and water, respectively. The phase separa-
tion occurs at the temperature where the enthalpy of
hydrophobic interactions is balanced by the enthalpy of
hydrogen bonding;® beyond that temperature the hy-
drogen bonds break, and the solution demixes. In a first
approximation, this enthalpy balance can be expressed
by the ratio of hydrophobic/hydrophilic (H bonding)
interactions in the polymer or (in our case) by the
balance of hydrophobic/H-bonding interactions within
the monomer ()

hydrophobic interaction

hydrophilic interaction

(# ethylene) ¢
oc
(# EO) AHEQ, .4 + (# ester) AHSE

=0 4

where ¢ is the hydrophobic interaction enthalpy of an
ethylene group, and AHE/®5%T s the hydrogen-bonding
enthalpies for an EO and ester group. As defined in eq
4, O can be used to quantify the excess enthalpy of

solute/solvent interactions per monomer. The phase-
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Figure 2. Experimental cloud point temperatures as
a function of the monomeric hydrophobic/hydrophilic
balance. Several monomer stoichiometries (m/n) are
shown for monomers composed of m-ethylenoxide and
n-ethylene parts connected by ester and amide groups.

transition temperature of high-molecular-weight poly-
mers made up of such monomers should also follow the
same dependence® on the ratio between the enthalpy of
hydrophobic EE groups and the enthalpy of hydrogen-
bonding (EO and ester) groups in the monomer ().

In Figure 2 we summarize all the phase-separation
(CP) temperatures as a function of ()/e measured for all
monomer compositions at 1 wt % polymer solution. For
the estimation of () the number of EO and EE units are
specified by the monomer selection, and the H-bonding
enthalpies are well quantified in the literature'® (the
value of the hydrophobic interaction energy & of the
ethylene groups is not known as precisely, but because
it is common for all polymers it can be scaled out in (/e.
From Figure 2 it is clear that the CP temperature
depends linearly on the hydrophobic/hydrophilic bal-
ance, as predicted theoretically, and by tuning the stoi-
chiometry of the monomer we could span a temperature
range from 15 to 50 °C for the polyesters in eqs 1 and 2.
In addition, because this should be a general behavior,
we further expanded this series of ester polymers to the
comparable series of amides (m = 13 or 5, and n = 3 or
5) in Structures 1 and 2 and to linear polyamides with
a cycloaliphatic hydrophobic group:

0 o]
poly{CHz-(CHZ—o-CHz}"gHz-c'ﬁ—ry—{CHz-CHz)n—ry—?ﬁ (5)
H H

o] o}
poly-[-CH2-<CH2—O-CH2>-"(13H2~(I£—I}I—QCHZQN—6+
H H

(6)

The CP temperatures for five of the preceding amides
are also depicted in Figure 2 (with the obvious correc-
tion in (/e for the enthalpy of an amide H bond instead
of an ester). As expected, the polyamide CPs appear at
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higher temperatures in comparison with the respective
polyesters (because the amide groups can hydrogen
bond to water more strongly than the esters). More-
over, the CP temperature dependence on (/e for the
polyamides in Structure 1 is parallel to the polyester
line (because the phase separation is controlled by the
EO/ethylene parts of the monomer, which remain the
same). The polyamides of Structure 2 also exhibit a
similar ()/e dependence; however, addition of their CP
temperatures to the Figure 2 plot necessitates the eval-
uation of a “relative hydrophobicity” of the methyl-
dicyclohexane group as compared to the ethylene group
(because ¢ corresponds to the hydrophobic interaction
of an ethylene). A relative value of four places the
polyamides (Structure 2) in the same line as the poly-
amides (Structure 1), as estimated and discussed else-
where. ¢

With the combined polyester/polyamide series of al-
ternating copolymers, it is possible to tune the temper-
ature response of these polymers in the range of 7-70
°C—almost the whole range of temperatures relevant
to water at ambient pressure—by simply tailoring the
hydrophobic/hydrophilic balance in the monomer.
Given the control of the phase separation by the mono-
mer stoichiometry, we believe that the synthesized
temperature-sensitive polymers can be a class of mate-
rials with much promise for applications in smart/re-
sponsive systems, especially in biomedical and/or mi-
crofluidic applications.

CONCLUSIONS

A series of linear polymers with a systematically varied
hydrophobic/hydrophilic balance in their monomer was
synthesized, and their water-solution behavior was ex-
plored. Simple scaling arguments have shown that
these temperature-responsive polymers obey a linear
dependence of the transition temperature on the mono-
meric hydrophobic/hydrophilic balance. By tailoring
the monomer stoichiometry (using short EO and ethyl-
ene units connected by ester or amide groups), we were
able to achieve transition temperatures from 7 to 70 °C
in water at ambient pressures.

EXPERIMENTAL

All reagents were purchased from Sigma-Aldrich in
purum grade. Spectroscopic grade THF was purchased
from VWR. The water-soluble polymers were charac-
terized by aqueous gel permeation chromatography
(GPC), and their characteristics are given in the Table
1. Aqueous GPC measurements were carried out on a
Polymer Laboratories GPC, bearing PL. Aquagel-OH
columns, and calibrated by PEO standards. CP mea-

Table 1. Molecular Weight Characterization of the
(1) and (2) Polyesters by Aqueous GPC

Polyester (m/n) M., (g/mol) M, /M,
13/3 377,860 3.04
13/6 575,050 1.33
5/3 247,080 2.06
4/3 300,510 1.83

surements were carried out in a water heat bath,
wherein a 2-mL sample vial holding the polymer aque-
ous solutions was immersed. The temperature was var-
ied at a heating/cooling rate of 0.2 °C/min, and the
solution temperature was measured inside the sample
vial by a thermocouple. CP was determined by moni-
toring the transmitted light signal of a red (650 nm)
semiconductor laser (2 mW) through a Metrological
photodetector with a digital indicator (accuracy of
1 uW).
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