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ABSTRACT: The nonlinear rheology of an unentangled polymer melt under shear flow is considered 
theoretically. The finite chain extensibility is taken into account explicitly. The tangential stress and 
the first and the second normal-stress differences are calculated as a function of shear rate 9 .  It is shown 
that in the shear thinning regime, the viscosity r,~ decreases as p-2/3. 

1. Introduction 
In the last decades considerable progress has been 

made in the rheology of polymer solutions and polymer 
m e l t ~ . l - ~  At the same time, the nanorheology of con- 
fined polymer systems, the rheology of liquid crystalline 
polymers, and the rheology of block-copolymer systems 
is still in its infancy. In the present paper, one of these 
problems, namely nonlinear rheology of polymer melts, 
will be considered. The essential ingredient of our 
analysis is the finite extensibility of polymer chains. All 
effects connected with topological entanglements are 
ignored; i.e. the polymer chains are assumed to be 
relatively short. 

Experiments demonstrate that the bulk polymer 
melts consisting of short chains exhibit nonlinear 
behavior for extremely high shear However, 
when the melt is confined between two walls a t  a 
distance of the order of the size of the polymer coil, the 
nonlinear effects emerge at essentially small shear 
 rate^.^-^ The principal reason for this behavior is 
connected with the strong suppressing of the relax- 
ational processes in the confined ~ t a t e . ~ - ~  

Here we consider the nonlinear rheology at high shear 
rates in the unconfined bulk. The confined situation is 
considered in ref 12 for the case of strong adsorption 
and in ref 13 for the case of weak adsorption. 

Our approach will be a scaling analysis based on the 
following model. Let us divide the chains in N statisti- 
cal segments of length a, so that Nu2 = (R2), where R 
is the end-to-end distance vector, and excluded volume 
u = VI”, where Vis the excluded volume of whole chain. 
The melt is an incompressible system; therefore equi- 
librium chain statistics in the bulk is essentially Gauss- 
ian.1° Throughout the paper, energy will be expressed 
in units kBT. 

2. Nonlinear Rheology in the Bulk 
Let us introduce Cartesian coordinates (x, y, z )  and 

assume that the velocity field, directed along the x-axis, 
is characterized by a shear rate y .  The velocity gradient 
is along the z-axis (Figure 1). 

The case where the chain is described as a Rouse 
chain with infinite extensibility will be considered first. 
The flow elongates the chain by the friction force 
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Figure 1. Definition of the coordinate system. 

where 5 is the friction coefficient of a segment and R, is 
the size of the polymer coil in the z direction (R, - aN”). 
Due to  this force the chain becomes elongated along the 
x-axis with end-to-end distance 

where z - <a2 is the characteristic relaxation time of a 
segment. 

The tangential and normal stresses in the system can 
be calculated from the well-known equation for the 
stress tensor.1,2J0 Let us assume that a statistical 
segment with index n along the chain is elongated by 
means of the friction force Pn) and that the end-to-end 
distance vector for the segment is r(n). In this case the 
stress tensor is given by 

N 

(3) 
n=l 

where c is the concentration of the chains in the bulk, 
i.e. c - l/(Nu). For our situation the friction force f,”’ - 
F,, fyn) = t’ = 0. Furthermore, Cz=lr‘n) = R. After 
substitution of eqs 1 and 2 and averaging with respect 
to the Gaussian distribution function ((R,) = 0, (Rz2> - 
a2N) [note that the friction forces, t’, acting in the x 
direction, do not affect the chain statistics in they, z 
directions: the chain keeps unperturbed Gaussian 
dimensions along these axes], the well-known results 
of the Rouse model for the tangential stress a,, and the 
first N1 and second N2 normal-stress difference are 
recovered.1,2 
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Of course, the effective viscosity 7 = uxzly - zNlv is 
proportional to the molecular weight of the chains. 

For large enough shear rates eq 2 implies that the 
component R, of the end-to-end vector will be very large. 
However, real macromolecules are characterized by a 
limited extensibility: the end-to-end distance cannot 
become larger than the contour length, R,,, which is 
proportional to N (R, - aN). This fact leads to nonlinear 
chain elasticity and to  nonlinear properties of the melt. 
The idea of coupling between nonlinear chain elasticity 
and the corresponding nonlinear dynamics beyond 
perturbation theory was first considered in ref 11 and 
later applied to the description of nonlinear rheology of 
confined polymer melts with strong adsorbing walls.12 

Ip the general case the chains are characterized by 
the following relation between the elastic force F and 
the end-to-end distance R 

with 

q ( x )  = 1 + KIX + K g 2  + ... x < 1 

q ( l )  = OQ (6) 

where ~ 1 ,  ~ 2 ,  ... > 0 are numerical coefficients. This 
functional relation is well-known for random flight 
models.14-16 When the chain is stretched, the tangential 
deformation R,, due to the nonlinearity (i.e. finite 
extensibility), induces an additional normal elastic force 
AFn = Fn(Rn,Rx) - Fn(Rn,Rx = 01, where Rn = 
d m ' .  If the elongation is small, R, << aN, the 
relation between tangential and normal forces can be 
calculated by perturbation theory: 

Rn 1 
AFn - y F x 2  F, < - a 

If, on the other hand, R, - aN and rp >> 1, then AFnlFx 
= RnlaN or 

It is clear from eq 7b that, when the elongation force 
satisfies F, > lla, the induced normal force for R, - 
awl2 satisfies AF, > l/(aWI2) and, hence, exceeds the 
thermal force. As a consequence, the characteristic 
normal size R, of the chain must decrease. This effect 
appears for shear rates y > p*, where the critical shear 
rate k* follows from the condition F, - lla 

The characteristic normal size, R, = t, for higher 
shear rates can be derived from the following argu- 
ments. The flow causes elongation of the chain by the 
friction force (1). This force is large enough (for large 
N) to almost completely extend the chain in the x 
direction and to suppress its fluctuations in the normal 
direction. In fact, the force F, tends to extend the chain 

Figure 2. Schematic picture of chain motion for high shear 
rates. 

as much as possible: its end-to-end projection onto the 
x-axis is R, - Rm, (for simplicity we assume that a pair 
of forces is applied to  the chain ends). Any deviation of 
the chain in the z direction (on a distance -6) will imply 
a decrease of R, by at least AR, - t2/Rx. The typical 6 
is given by the condition 

& F X - 1  (9) 

6 - a(jm-lI3 (10) 

Equations 1 and 9 give the result 

Obviously, fluctuations take place on smaller scales 
as well. Let us consider a blob consisting ofg segments 
(i.e. any part of the chain containing g segments) with 
a typical normal size rga - rg+ - en - ag1l2, and fixed 
end-to-end distance rgT - ag. The flow impacts on this 
blob by the friction force 

(11) 

The fluctuations in the normal direction imply fluctua- 
tions along the x direction with characteristic amplitude 
A, - gn21(ag) - a.  The maximum blob for which the flow 
does not affect its size in the normal direction can be 
obtained from the condition AxfgT - 1. From this the 
previously derived result eq 10 is found again. The 
characteristic number of segments g in the maximum 
blob is 

g - (jP3 (12) 

For high shear rates (p > p*), the motion of the chains 
is more complicated. If the projection of the end-to-end 
vector onto the z-axis is negative, R, < 0, the chain will 
rotate (Figure 2). The characteristic rotation time is 
given by 

Trot - (aN)l(.i/U - t N ( p ~ ) - ~ / ~  (13) 

This effect is not important for the present discussion 
but will be important for a discussion of oscillatory 
shear. l7 

Now let us consider the stresses in the bulk. We start 
with small shear rates, p < p*. The shear stress and 
the first normal-stress difference, N I ,  coincide in this 
regime with the corresponding results for the Rouse 
model, eq 4. Within the approximations used (the Rouse 
model + incompressibility) the flow parts of uyy and a,, 
stresses are zero. Compare 3 where fin) is the additional 
hydrodynamic force due to  the macroscopic flow acting 
on the nth link. For the Rouse model this force is 
proportional to the flow velocity and therefore has only 
an x component unequal to zero. Hence, 

N2 = 0 (14) 

In order to calculate the stresses for high shear rates 
( y  > y*) ,  the essential parameter is the tension force 
along the x-axis of a statistical segment, which is (Figure 
3) 
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Figure 3. Characteristic conformation of the chains for high 
shear rate. f0 

In 9‘ In Y 
Figure 4. Tangential ( u d  and normal ( N I )  stresses as a 
function of shear rate 9 .  

(15) 

Therefore, the tangential component of the stress is 

’I 

the first normal-stress difference is given by 

The second normal-stress difference is still zero also for 
the nonlinear regime. The qualitative dependence of 
ox,, N1 on p is shown in Figure 4. 

From eq 17 the following expression for the viscosity 
is obtained 

(18) 

Thus the viscosity for shear thinning satisfies the 
familiar -V3 power law (Figure 5). This power law has 
been obtained analytically before3 for the non-Hookean 
dumbbells model with a force law obeying eq 5 with 

In the present paper we show that the power law 
of shear thinning is universal for systems with finite 
extensibility. 

3. Concluding Remarks 
In this paper a theory for nonentangled polymer melts 

in the bulk state has been developed. Taking into 
account finite extensibility of the chains, the tangential 
and the first and the second normal-stress differences 
were calculated and it was demonstrated that the 
viscosity in the shear thinning regime decreases by a 
-2/3 power law. 

This law has been found experimentally and by 
computer simulations for strongly confined short chain 
 system^.^-^ The principal difference between bulk and 
confined melt consists in the scale of the relaxation 

I \-- ~ 4 
In Y’  In Y 

Figure 5. Schematic behavior of effective viscosity 7 as a 
function of shear rate y .  

times. To date, no consistent description of the mech- 
anisms that lead to a strong increase of the relaxational 
times in the confined melt exists. However, experi- 
ments shoW4-8 that the relaxational processes are 
strongly suppressed in the confined state. As a result 
nonlinear rheological behavior for confined polymer 
melts is manifested for much smaller shear rates than 
for the bulk. This is connected with the fact that the 
characteristic shear rate for shear thinning is inversely 
proportional to the relaxation time of the polymer 
segments (eq 8). 
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