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Abstract

The aqueous solution phase behavior of (ethylene oxide)/ethylene copolymers with varying degree of hydrophobicity is explored using an
equation of state approach. The general formalism of the lattice-fluid with hydrogen-bonding theory is employed after a minor adjustment to
account for multiple types of hydrogen bonds. The theoretical model is shown to be effective in describing the phase behavior of these systems,
and the model parameters seem to be transferable between different homologous copolymer series. Despite limitations of the model, the calculated
phase diagrams and the dependence of lower critical solution temperature (LCST) on the hydrophilic/hydrophobic content of the polymer show
good correspondence with the available experimental data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Aqueous polymer solutions are important from a technolog-
ical point of view [1], but, at the same time, represent systems
whose theoretical description can be challenging [2]. These chal-
lenges arise from the fact that systems of molecules interacting
with strong specific interactions, such as hydrogen-bonding,
deviate remarkably from normal solution behavior. However,
there is a strong interest in designing polymer systems – going
beyond hydrogels – with a controlled solubility in water, since
they could potentially be used in a variety of applications
requiring smart/responsive materials, e.g. sensors, actuators,
cell patterning, and smart/triggered drug delivery. Temperature-
sensitive solubility can be rendered from the existence of the
lower critical solution temperature (LCST), above which the
polymer becomes insoluble in water. Thus, an analytical model
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which would describe the LCST-type phase behavior of aqueous
polymer solutions in a clear, concise and self-consistent manner
and yet having a certain predictive power is very desirable.

Poly(ethylene oxide) (PEO) is historically one of the most
investigated water-soluble polymers with an LCST, includ-
ing considerable theoretical attention in recent years [3–5].
Its LCST has been associated with its ability to hydrogen
bond to water, and occurs at temperatures above 100 ◦C –
i.e. above the boiling point of water for ambient pressures –
thus limiting its use for applications requiring a temperature-
response. However, it has been predicted that the LCST of
water-soluble polymer can be altered by controlling the balance
of hydrophilic and hydrophobic segments in the polymer chain
[6]—e.g. PEO’s LCST can be lowered by proper addition of
hydrophobic groups [7]. This approach was tested for various
polymers, such as poly(N-isopropyl acrylamide) (PNIPAM) [8],
poly(siloxyethylene glycol) [9], random copolymers of ethylene
oxide and propylene oxide (EOPO) [10], as well as alternating
segmented copolymers of ethylene oxide and ethylene (EO–EE)
[11]. A sharp LCST transition, which corresponds to a gen-
uine coil-to-globule transition [12] and which is determined
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by the hydrophilic/hydrophobic balance, dictates a polymer
structure where hydrophilic and hydrophobic segments are not
lumped together in extended blocks [7,11], since such blockiness
facilitates micellar type of aggregates/collapse [13,14]. In this
work, we will focus on this type of oligo-ethylene-oxide/oligo-
ethylene linear copolymers, which were shown to exhibit LCST
phase behavior similar to that of pure poly(ethylene oxide) with
a sharp LCST transition tailored at varied temperatures (from
7 to 80 ◦C) via the copolymer composition [11]. Specifically,
focusing on these polymers, we employ a well-established equa-
tion of state theoretical framework [2,15] to describe their phase
behavior.

From an Equation-of-State theoretical viewpoint, one can
treat physical (van der Waals) interactions with the well-
established Sanchez–Lacombe lattice-fluid (LF) model [15,16],
which is a compressible lattice theory (compressibility effects
also give rise to an LCST, in the general case of polymer
solutions) and thus can overcome the drawback of incompress-
ible classical Flory–Huggins theory that is inherently unable to
account for an LCST [17]. In addition, combining the lattice-
fluid approach with the chemical association approach [18],
enables the thermodynamic description of hydrogen-bonded
polymer solutions. In a model proposed by Panayiotou and
Sanchez – known as the lattice-fluid with hydrogen-bonding
(LFHB) theory [19]– the physical contributions are treated
with a lattice-fluid model and the chemical contributions are
treated through an enumeration of pair interactions between
various hydrogen-bonding donor and acceptor groups. Namely,
the chemical (hydrogen-bonding) contributions of LFHB are
based on the combinatorial expression for the number of
ways of forming hydrogen bonds proposed by Veytsman [20]
and extended in the spirit of Levine and Perram [21], which
allows to treat hydrogen-bonding in water. The LFHB approach
has been successfully applied to phase behavior studies for
a variety of fluid mixtures, including polymers and aque-
ous systems, in the extended range of external conditions
[2].

The specific goals of this study are (a) to apply the LFHB to
the LCST phase behavior of (ethylene oxide)/ethylene copoly-
mers, an application which necessitates a minor modification so
as LFHB can address multiple types of hydrogen bonds; and (b)
to verify the assumption that the phase behavior of these systems
is of the same nature as that of PEO, but with an LCST lowered
in value by the hydrophobic character of the ethylene units.

2. Theoretical model and framework

The basic approximation of the model is that physical (van der
Waals) and chemical (hydrogen-bonding) forces are effectively
decoupled, i.e., the canonical partition function can be factored,
so that one factor disregards the existence of hydrogen bonds
and considers only physical intermolecular interactions, while
the other factor takes into account only the hydrogen bonding.
Physical interactions will be described in terms of lattice-fluid
theory and chemical interactions will be pertinent only to proton-
donor and acceptor groups forming hydrogen bonds. On the
basis of this assumption the canonical partition function can be

expressed as

Q = QLFQHB (1)

We define our system to contain t types of molecules, with Nk

molecules of k-th type at temperature T and external pressure
P. Also, there are m types of proton-donor groups and n types
of proton-acceptor groups, with di

k being the number of donor
groups of i-th type in each molecule of k-th type and, equiva-
lently, aj

k being the number of acceptor groups of j-th type in
each molecule of k-th type.

2.1. Lattice-fluid

According to the lattice-fluid theory, molecules are arranged
on a quasi-lattice of Nr sites, N0 of which are empty. Each
molecule of k-th type is divided into rk segments of close-packed
volume v∗

k in the pure state and average (mean-field) interaction
energy ε∗

k . The total number of lattice sites is then

Nr = rN + N0 with r =
t∑

k=1

rkxk, (2)

where rN is the total number of molecular segments in the
system and xk is the mole fraction of k-th component in the mix-
ture (xk = Nk/

∑t
k=1Nk). The following combining and mixing

rules are assumed

v∗ =
t∑

k=1

φkv
∗
k and ε∗=1

2

⎛
⎝ t∑

p=1

φpsp

⎞
⎠( t∑

k=1

t∑
l=1

θkθlεkl

)
,

(3)

where φk are the segment fractions (defined as φk = xkrk/r) and
θk are the surface fractions (defined as θk = φksk/

∑t
l=1φlsl,

where sk is the average number of contacts per k-th seg-
ment, equivalent to a surface to volume ratio of that
segment). A Berthelot-type combining rule is adopted for
εkl

εkl = 2ξkl

(
ε∗
kε

∗
l

sksl

)1/2

(4)

where ξkl is a dimensionless parameter, expected to have val-
ues close to unity. The total lattice-fluid volume of the system is
given by VLF = Nrv

∗ = rNv∗ṽ, where the reduced volume (ṽ =
1/ρ̃) is defined on the basis of a reduced density (ρ̃ = rN/Nr).
Similarly, the total potential energy of the system, as derived in
Refs. [15,19] taking into account only nearest-neighbor interac-
tions and ignoring interactions with empty sites, is given by
−ELF = rNρ̃ε∗. On the basis of this definitions the canoni-
cal partition function of the physical interactions is given [19]
by:

QLF(T, N0, {Nk}) = (1 − ρ̃)−N0 ρ̃−N
t∏

k=1

(
ωk

φk

)Nk

exp

[
−ELF

RT

]
(5)

where ωk is the number of configurations available to a rk-mer in
the close-packed pure state; ωk is treated as a constant and will
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cancel out in all applications of interest here (this is not obvious
in cases of PEO physisorption on solid surfaces, or in extreme,
sub-Rg, confinements [22–24]).

2.2. Hydrogen-bonding

The interaction energies due to hydrogen-bonding contri-
bution are in excess of the physical interactions (which are
accounted for by the lattice-fluid part of the partition function).
For the hydrogen bond between a donor of the i-th type and
an acceptor of the j-th type, we define E0

ij to be the favor-

able energy change upon hydrogen bonding, S0
ij the entropy loss

associated with the (i,j) bond formation, and V 0
ij the respective

volume change. In the general case, there are Nij bonds of the
(i,j) type, thus the total hydrogen-bonding energy of the system
is

EHB =
m∑

i=1

n∑
j=1

NijE
0
ij (6)

The number of ways of distributing the Nij bonds among
the functional groups of the system is given by the combinato-
rial expression corrected by the mean-filed probability of bond
formation, as derived in Ref. [19]:

� =
m∏

i=1

Ni
d!

Ni0!

n∏
j=1

Na
j!

N0j!

m∏
i

n∏
j

Pij
Nij

Nij!
(7)

where Ni
d is the total number of donor groups of i-th type

(Ni
d =∑t

k=1d
k
i Nk) and N

j
a is the total number of acceptor

groups of j-th type (Nj
a =∑t

k=1a
k
jNk), leaving Ni0 number

of unbonded donors of i-th type and N0j number of unbonded

acceptors of j-th type (Ni0 = Ni
d −∑n

j=1Nij and N0j = N
j
a −∑m

i=1Nij), and Pij is the mean-field probability of (i, j) bond
formation

Pij = ρ̃

rN
exp

[
S0

ij

R

]
(8)

Following this formalism the canonical partition function for
hydrogen bonding can by written as [19]

QHB(T, N0, {Nk}) =
∑
{Nij}

(
ρ̃

rN

)	
ij

Nij m∏
i=1

Ni
d!

Ni0!

n∏
j=1

Na
j!

N0j!

×
m∏
i

n∏
j

1

Nij!
exp

[
−Nij(E0

ij − TS0
ij)

RT

]

(9)

Various hydrogen-bonding fractions are defined by

νij = Nij

rN
, νi0 = Ni0

rN
, ν0j = N0j

rN
, νi

d

= Ni
d

rN
, νj

a = N
j
a

rN
(10)

2.3. Free energy and equations of state

The Gibbs free energy in a framework of the lattice fluid the-
ory with hydrogen-bonding (LFHB), developed by Panayiotou
and Sanchez [19], consists of two terms: lattice-fluid and
hydrogen-bonding

G = GLF + GHB (11)

which follows immediately from the expression for the Gibbs
partition function given by

�(T, P, {Nk}) =
∞∑

N0=0

QLF(T, N0, {Nk})QHB(T, N0, {Nk})

× exp

(
−PV

RT

)
(12)

with G = −kT ln � and V is the system volume

V = rNṽv∗ +
m∑

i=1

n∑
j=1

NijV
0
ij (13)

While the reduced pressure (P̃) and reduced temperature (T̃ )
are:

P̃ = P

P

∗
= Pv∗

ε∗ and T̃ = T

T ∗ = RT

ε∗ (14)

the lattice-fluid contribution can now be expressed by

GLF

kBT
= rN

{
− ρ̃

T̃
+ P̃ ṽ

T̃
+ (ṽ − 1) ln(1 − ρ̃)

+ 1

r
ln ρ̃ +

t∑
k=1

φk

rk
ln

φk

ωk

}
(15)

and the hydrogen-bonding contribution is given by

GHB

kBT
= rN

⎧⎨
⎩

m∑
i=1

n∑
j=1

νij +
m∑

i=1

νi
d ln

νi0

νi
d

+
n∑

j=1

νj
a ln

ν0j

ν
j
a

⎫⎬
⎭ (16)

The Gibbs partition function was evaluated in the usual way by
using the maximum term approximation [25]. This is equiva-
lent to using the generic term in (12) for the Gibbs free energy
(substituting the factorials with the Stirling approximation) and
implying the minimization conditions with respect to ṽ and Nij(

∂G

∂ṽ

)
T,P,{Nk},{Nij}

= 0 and

(
∂G

∂Nij

)
T,P,ṽ,{Nk},{Nrs}

= 0

(17)

The first condition of (17) yields the equation of state for the
reduced density

ρ̃2 + P̃ + T̃

[
ln(1 − ρ̃) + ρ̃

(
1 − 1

r̄

)]
= 0 (18)

where 1/r̄ = 1/r − νH and νH =∑m
i=1
∑n

j=1νij . The second
condition in (17) yields a system of equations for the fractions
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of hydrogen bonds in the system

νij

νi0ν0j

= ρ̃ exp

[
−G0

ij

RT

]
(19)

where G0
ij = E0

ij + PV 0
ij − TS0

ij . The reduced density equation
of state (18) and the H-bond fractions equations (19) are used
together and serve as a system of equations of state⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ̃2 + P̃ + T̃

[
ln(1 − ρ̃) + ρ̃

(
1 − 1

r̄

)]
= 0,

νi0ν0jρ̃ − νij exp

(
G0

ij

RT

)
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

Chemical potential of k-th component is obtained as follows

μk =
(

∂GLF

∂Nk

)
T,P,Nj,ṽ,{Nij}

+
(

∂GHB

∂Nk

)
T,P,Nj,ṽ,{Nij}

= μk,LF + μk,HB (21)

and is given by

μk

kBT
= ln φk +

(
1 − rk

r

)
φk

+ rkρ̃

⎛
⎝∑

i<k

θi

sk

si
Xik +

∑
i>k

θiXki −
∑
i<j

θiθj

sk

si
Xij

⎞
⎠

+ rk

(−ρ̃ + P̃kṽ

T̃k

+ (ṽ − 1) ln(1 − ρ̃) + 1

rk
ln

ρ̃

ωk

)

+ rk

m∑
i=1

n∑
j=1

νij −
m∑

i=1

di
k ln

νi
d

νi0
−

n∑
j=1

aj
k ln

ν
j
a

ν0j

, (22)

where Xkl is the reduced average interaction between k-mer and
l-mer and P̃k = P/P∗

k = Pv∗
k/ε

∗
k and T̃k = T/T ∗

k = RT/ε∗
k

2.4. Binary mixture

Focusing on the phase behavior of a polymer–solvent binary
mixture (index 1 denotes solvent, and index 2 polymer) r
becomes r = r1x1 + r2x2, and the mole fractions (xi) and the
corresponding segment fractions (φi) are simply:

x2 = 1 − x1 = N2

N1 + N2
and φ2 = 1 − φ1 = r2x2

r
(23)

and the surface fractions become

θ2 = φ2

φ2 + φ1(s1/s2)
and θ1 = 1 − θ2 = φ1

φ1 + φ2(s2/s1)
(24)

where s1/s2 is ratio of the surface area per unit char-
acteristic volume for solvent and polymer and can be
calculated/approximated by a hard-sphere model or via van der
Waals radii. The mixing and combining rules simplify to

v∗ = φ1v
∗
1+φ2v

∗
2 ε∗ = φ1ε

∗
1 + φ2ε

∗
2−φ1θ2RTX12, (25)

where X12 = (ε∗
1 + (s1/s2)ε∗

2 − 2(s1/s2)1/2ε∗
12)/RT with ε∗

12 =
ξ12
√

ε∗
1ε

∗
2. The dimensionless parameter ξ12 is the only free

parameter of the model, and is expected to have values close to
unity.

In the binary case of the model, the phase behavior can be
determined in terms of two independent variables – composi-
tion x2 and temperature T– along with a number of parameters,
including external pressure P. External pressure is always kept
constant in our considerations, thus it is treated as a parameter
rather than a variable. Other parameters of the model include,
from the lattice-fluid part: average interaction energies ε∗

1, ε∗
2,

close-packed volumes v∗
1, v∗

2, and numbers of segments r1,
r2; and, from the hydrogen-bonding part, for each (i, j) bond
type: favorable energy change E0

ij , entropy loss S0
ij , and vol-

ume change V 0
ij . All these parameters can be obtained from

experimental PVT data, from mixing rules, and from hydrogen-
bonding interactions data, all of which can be found in literature
for a variety of components [25].

The coexistence curve (binodal) – depicting the composition
of coexisting phases at different temperatures – is obtained by the
typical thermodynamic stipulation that the chemical potential
of both component is the same in all coexisting phases, i.e. at a
given temperature T mole fraction points xA

2 and xB
2 belong to

the binodal curve if the following conditions is satisfied

μA
1 − μB

1 = 0, μA
2 − μ2

B = 0 (26)

To find a pair of binodal points one needs to solve (26)
and the system of equations of state (20) simultaneously. The
corresponding spinodal curve, which separates the region of
thermodynamic instability from the region of metastability and
at a given temperature T, is determined by

dμ2

dx2
= 0 (27)

Consequently, it is required to solve simultaneously (27) with
the system of equations of state (20) and the system of first
composition derivatives d/dx2 of the equations of state. The
extremum point of the spinodal curve, corresponding to the
critical point of the system, is given by

d2μ2

dx2
2

= 0 (28)

Finding a critical point is equivalent to the simultaneous solu-
tion of (28) with the system of equations of state (20) along
with first d/dx2 and second d2/dx2

2 composition derivatives of
the equations of state, which adds up to a rather large system
of nonlinear equations. The system of this size and complexity
cannot be solved analytically even in relatively simple cases,
thus requiring a numerical approach to the finding of the solu-
tion. The explicit form of the equations for binodal, spinodal and
critical point are provided in Supplemental Materials, whereas
the numerical solution procedure is outlined in Appendix A.
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Table 1
Lattice-fluid parameters

T ∗ (K) P∗ (Pa) ρ∗ (kg/m3)

H2O 518 4.75 × 108 853
PEO 541 6.05 × 108 1172

3. Results and discussion

3.1. PEO/water model

Probably the most investigated polymer with an LCST in
water solution is poly(ethylene oxide) (PEO). It has been estab-
lished, both experimentally and theoretically, that the phase
behavior of PEO in water is determined by the hydrogen bonding
balance between water and PEO molecules. Let us first consider
an application of LFHB theory to the case of water/PEO mix-
ture. Each OH group acts as both a donor and an acceptor, thus
a water molecule has d1

1 = 2 donors and a1
1 = 2 acceptors. Let

us denote the number of –O– groups per PEO molecule with
a, hence the PEO molecule has a2

2 = a acceptors, where a is
the degree of polymerization of PEO. There will be two types
of H-bonds in this system (1, 1) and (1, 2), water–water and
water–polymer correspondingly. Chemical potential of the poly-
mer μ2 and of water μ1 can be obtained from (22), by rewriting
for the binary case of two types of hydrogen bonds. There will
be three equations of state—one for the reduced density and one
for the H-bond fraction of each type ν11 and ν12 (20).

Lattice-fluid and hydrogen-bonding parameters of the model,
shown in Tables 1 and 2, are obtained from the literature
[19,26,27]. Tabulated data can be translated into the terms of
LFHB model via obvious relationships

ε∗
k = RT ∗

k , v∗
k = ε∗

k

P∗
k

, rk = Mwk

ρ∗
kv

∗
k

(29)

where Mwk is the molecular weight of k-th component. The ratio
of surface areas per unit characteristic volume for water and

Table 2
Hydrogen-bonding parameters

(i, j) E0
ij (J/mol) Sij

0 (J/(mol K)) Vij
0 (m3/mol)

–OH · · · –OH (1,1) −1.55 × 104 −16.6 −4.2 × 10−6

–OH · · · –O– (1,2) −1.42 × 104 −16.0 −8.5 × 10−7

–OH · · · C O (1,3) −1.60 × 104 −15.8 −8.5 × 10−7

N–H · · · –OH (2,1) −1.25 × 104 −7.8 −8.5 × 10−7

ethylene oxide can be calculated based on hard-sphere model to
be (s1/s2)EO = 1.3424. The dimensionless variable ξ12 is treated
as a free parameter of the model.

Finding the pair of binodal points at given temperature T
involves solving the system of 8 nonlinear equations, finding a
concentration and a temperature of a spinodal point is equivalent
to solving the system of 7 equations, and the critical point can
be found as a solution to the system of 11 equations, solved
numerically as described in Appendix A.

At the limit of high molecular weights the phase behavior of
polymers becomes almost molecular weight independent, which
allows us in the first approximation to disregard the effects of
the molecular weight, i.e. keep Mw in all of our calculations
in this section constant and equal to 6 × 105, the approximate
molecular weight of m = 13, n = 6 ester copolymer [11]. Fol-
lowing this approach, the phase diagram of Mw = 105 PEO [28]
was fitted with the calculated PEO binodal using the numeri-
cal procedure described in Appendix A, yielding a value for the
dimensionless interaction parameter ξ12

EO = 1.0472, the exper-
imental and the calculated phase diagrams are shown in Fig. 1a.
This value of ξ12

EO was used in later calculations of the phase
diagrams of our “polyester” and “polyamide” ethylene oxide
copolymers without any further change.

3.2. P(EO–EE)/water model

The polymers of interest are based on a linear alter-
nating sequence of oligo(m)-EO and oligo(n)-EE [11] with

Fig. 1. (a) Experimental coexistence curves fitted with calculated binodals (solid line); (b) LCST dependence on hydrophilic/hydrophobic balance m/n for the
general case of [(EO)m–(EE)n] copolymer as described in Section 3.2.
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the aim of tailoring polymer LCST by controlling the
hydrophilic/hydrophobic balance (m/n). These copolymers
exhibit phase behavior that appears similar to that of PEO, but
have an LCST at substantially lower temperatures. One of the
goals of this study is to see whether the LFHB model of PEO as
presented above can be extended to describe the phase behavior
of the [(EO)m − (EE)n] copolymer, which would imply that the
copolymer phase behavior can be considered similar in nature
as the aqueous phase behavior of PEO only temperature-shifted
by the hydrophobic EE group contributions. This can be done by
introducing the following simple combination rule (the weighted
average) for the EO and EE dimensionless parameters

ξ12 = m

m + n
ξ12

EO + n

m + n
ξ12

EE,

s1

s2
= m

m + n

(
s1

s2

)EO

+ n

m + n

(
s1

s2

)EE

(30)

The ratio of surface areas per unit characteristic volume
for water and ethylene can be calculated based on the hard-
sphere model (s1/s2)EE = 1.3266, and ξ12

EE can be obtained
from the best fit of the experimental phase diagram of one
of the P(EO–EE) copolymers. Replacement of EO segments
with EE segments decreases the number of hydrogen bonding
sites per polymer molecule, effectively reducing the hydrogen
bonding interactions, which is expected to result in lowering of
the LCST. The model produces satisfactory results in terms of
describing the phase behavior of the series of copolymers as a
function of hydrophilic/hydrophobic balance m/n with no fur-
ther modifications (Fig. 1b), simply by scaling the number of
hydrogen bonding sites per polymer molecule to be equal to

a2
2 = (a2

2)
PEO

m/(m + n), where (a2
2)

PEO = M
poly
w /MEO

w .
The application of the model to P(EO–EE) was tested in

the most simple case, which ignores the presence of the link-
age groups and accounts for the difference between PEO and
P(EO–EE) by using the combination rule for dimensionless
parameters and by appropriate rescaling of the number of the
polymer hydrogen bonding sites as described above. The dimen-
sionless interaction parameter ξ12

EE = 1.0860 was obtained
from the fit of the experimental coexistence curve of an m = 13,
n = 6 ester copolymer [11] with the LFHB binodal. This value
of ξ12

EE arguably contains implicit contributions from the ester
groups that link the EE and EO sequences. Despite the crude-
ness of this first approximation, LFHB can capture the trends
of the experimental data for the dependence of the calculated
LCSTs on the hydrophilic/hydrophobic ratio m/n for these ester
copolymers. The phase behavior of another homologous series
of EO/EE copolymers containing amide groups can be described
in the same manner, but will obviously require obtaining differ-
ent value for the ξEE

12 parameter (since now this parameter will
contain implicitly contributions from the amide linkage groups).
Given that the differences in phase behavior of these homolo-
gous polyester and polyamide copolymers should be explained
by accounting for the differences between the respective link-
age groups, it is more desirable to extend the model to include
the linkage groups explicitly by introducing a more rigorous H-

bonding counting scheme, and fix the ξEE
12 parameter to be the

same across all EE-containing copolymers with different linkage
chemistries.

3.2.1. Polyester EO–EE copolymers

(31)

The ester oxygen (C O) in the polyester copolymers (31)
introduces an additional type of acceptor to the model. Now there
are three types of H-bonds: (1, 1), (1, 2), (1, 3)—water–water,
water–polymer(ether oxygen, –O–), water–polymer(ester oxy-
gen, C O). Each water molecule has d1

1 = 2 donors and a1
1 = 2

acceptors of the first type, each P(EO–EE) molecule has a2
2 =

m · N acceptors of the second type, equal to the number of EO
segments, and a2

3 = 2 · N acceptors of the third type, equal to
the number of C O groups. We can assume that the van der
Waals contribution from the C O groups to the lattice-fluid
part of the model will be contained in the contribution from EE
segments and thus can be accounted for by the binodal fitting
through the combination rule (30). This leaves the lattice-fluid
part unchanged, except for the modified value of the dimension-
less parameters ξEE

12 , but it introduces one additional term to the
hydrogen bonding part of the chemical potential and an addi-
tional fourth equation to the system of the equations of state.
The critical point can be now found as a solution to the system
of 14 equations.

Lattice-fluid and hydrogen-bonding parameters of the model
from Tables 1 and 2 can be used in the model with the Eqs. (29)
and (30). The ratio (s1/s2)EE = 1.3266 was calculated based
on hard-sphere model, and the dimensionless parameter ξEE

12
can be obtained from fitting the experimental phase diagram of
polyester; for example, ξ12

EE = 1.0537 is obtained by fitting
experimental phase diagram for Mw = 6 × 105, m = 13, n = 6
polyester with the binodal calculated for the EO–EE copolymer
with the ester linkage group, the result of the fit is shown in
Fig. 1a and appears to be reasonably close to the experimental
phase diagram [11]. The dependence of the LCSTs of polyester
series on m/n ratio shown in Fig. 2 was calculated with the
aforementioned values of parameters, varying only m and n.
The calculated trend exhibits the same behavior as shown by
the experimental data [11]. One can see that the curve levels
off at large values of m/n, which corresponds to the polymer
phase behavior being dominated by EO segments, asymptoti-
cally approaching the LCST value of pure PEO.

3.2.2. Polyamide EO–EE copolymers

(32)

Similarly to the esters, when amide linkage groups (32) are
introduced in the EO–EE copolymer, the N–H group brings in
an additional type of donor, in addition to the ester C O dis-
cussed above. Now, each P(EO–EE) molecule has d2

2 = 2 · N

donors of the second type, equal to the number of N–H groups,
a2

2 = m · N acceptors of the second type, equal to the num-
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Fig. 2. (a and b) LCST dependence on hydrophilic/hydrophobic balance m/n for polyester series, calculated as described in Section 3.2.1.

ber of EO segments, and a2
3 = 2 · N acceptors of the third

type, equal to the number of C O groups. Polymer–polymer
hydrogen bond formation has a relatively small probability
and can be ignored in the case of dilute solutions, thus we
consider four types of H-bonds: (1, 1), (1, 2), (1, 3), (2,
1)—water–water, water–polymer(–O–), water–polymer(C O),
polymer(N–H)–water. As in the case of the polyester, this mod-
ification leaves the lattice-fluid part unchanged, but introduces
two additional terms to the hydrogen bonding part of the chemi-
cal potential and results in two additional equations to the system
of the equations of state. The critical point can now be found as
a solution to the system of 17 equations.

In this manner, after the introduction of this additional
hydrogen-bonding, the previous LFHB is used with the same
values as for the esters and with no further fitting, i.e., with the
parameter values from Tables 1 and 2, and the same pair of ξ12-
parameters, which were obtained from the binodals of PEO and
of the homologous polyester. The LCST versusm/n curve calcu-
lated for the copolymers with the amide linkage group is shown

in Fig. 3 and exhibits excellent correlation with the experimen-
tal data [11]. This agreement is despite the fact that none of the
parameters in the LFHB model were recalculated or adjusted
for this system, which, to a certain extent, proves the consis-
tency of the model and the validity of the assumption that the
EO–EE copolymer phase behavior can be accounted through a
“superposition” of the EO and EE aqueous phase behaviors.

3.3. Effect of molecular weight

To further test the validity of the model and of our assump-
tions, the influence of other parameters of the model was also
investigated. In particular, we checked the dependence on poly-
mer molecular weight, since the model has a complex explicit
dependence on r, and consequently on the size of the polymer
(i.e., the number of segments on the quasi-lattice is depen-
dent upon the polymer size). Focusing on PEO homopolymers,
the calculated LCST values as a function of the Mw are plot-
ted in Fig. 4a, and are compared with experimental values

Fig. 3. (a and b) LCST dependence on hydrophilic/hydrophobic balance m/n for polyamide series, calculated as described in Section 3.2.2.
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Fig. 4. (a) LCST dependence on molecular weight Mw for PEO, and EO–EE polyester and polyamide copolymers. (b) LCST as a function of hydrophilic/hydrophobic
balance m/n for polyester series with explicit Mw dependence (the star symbols are calculated LCST accounting for the experimental Mw of each system.

[28,29] showing a decent qualitative agreement for the trend
of polymer size on the PEO LCST. Specifically, the phase dia-
gram of Mw = 105 PEO [28] was fitted with the calculated
PEO binodal setting ξ12

EO = 1.0464 (the fit of PEO coexist-
ing curve for Mw = 1.02 × 106 [29] returned a similar value
ξ12

EO = 1.0467). In addition, after obtaining the correspond-
ing ξ12

EE = 1.0598 as before, from the fit of Mw = 5.75 ×
105, m = 13, n = 6 polyester coexistence curve, the critical
temperatures of the polyester copolymers were also calculated
for the molecular weight values reported for each polymer [11]
(i.e., Mw = 3.80 × 105 for m = 13, n = 3, Mw = 2.45 × 105

for m = 5, n = 3, and Mw = 3.00 × 105 for m = 4, n = 3).
The calculated LCST values, shown in Fig. 4b, exhibit excellent
agreement with the experimental data, compared to the previ-
ous case which disregarded the molecular weight dependence
(cf. line in Fig. 4b). Along the same lines, we also show in
Fig. 4a the molecular weight dependence of the EO–EE copoly-

Fig. 5. Coexistence temperature as a function of hydrophilic/hydrophobic bal-
ance m/n for the polyester copolymers, at a polymer weight fraction of 0.01 in
solution and for the experimental Mw (cf. Fig. 4b).

mers with ester and amide linkage groups. As expected [7], there
is a weaker Mw dependence on the LCST for the copolymers
compared to PEO, which is of importance for the design and syn-
thesis of these systems, but which has not been systematically
verified experimentally.

Finally, the experimental cloud point temperatures reported
in Ref. [11] are in fact measured for 1 wt% polymer solutions
and do not strictly correspond to the LCST values (although
φp = 1 wt% lies in the near vicinity of the critical concentration
for the reported molecular weights of the copolymers). Thus it
makes some sense to compare those experimental data against
the binodal temperatures at a weight fraction of polymer equal
to 0.01 and for the experimentally reported Mw, rather than
against against the LCST of a representative Mw (cf. Fig. 2).
This comparison is shown in Fig. 5 for the ester copolymers,
showing a very good agreement with the experimental data.

4. Concluding remarks

The LFHB model in the form of the equations of state
is suitable for describing the thermodynamic properties of
polymer solutions over an extended range of external condi-
tions. Unlike many alternative approaches, which ignore the
water–water interaction, the present model takes into account
both water–polymer and water–water H-bond formation, how-
ever the orientation of donor and acceptor sites with respect to
each other is not accounted for explicitly, due to the purely sta-
tistical nature of the chemical part of the model. The model
retains lattice-fluid mean-field character and inherent draw-
backs, which makes it impossible to account for difference
between alternating, random, and especially highly segmented
or block copolymers, or account for end-group effects (all of
which are extremely important for the phase behavior of the
copolymers in question).

Despite these drawbacks, the LFHB model, as applied here
with minor alterations to account for multiple hydrogen bonding
types, reproduced the experimentally observed phase behavior
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for aqueous solutions of PEO, and EO–EE ester and amide
copolymers. In particular, it captured the critical temperature
dependence on the hydrophilic/hydrophobic balance for two
series of copolymers, with the model parameters obtained from
one PEO homopolymer and one polyester copolymer and used
without further adjustment to the rest of the esters and to all
the amide series. This agreement leads to a few important,
albeit rather qualitative, conclusions on the phase behavior of
these uncharged copolymers: (a) the phase behavior of such sys-
tems is heavily controlled by the hydrogen-bonding, rather than
the van der Waals or other interactions; (b) the LCST, and to
some extent the binodal, can be predicted on the basis of the
PEO aqueous phase behavior after simple weighted-addition of
hydrophobic contributions, and thus can be related back to the
hydrophilic/hydrophobic balance in the copolymer composition;
(c) suggests that the effects of the water network distortion by
the introduction of hydrophobic groups, beyond the trivial re-
enumeration of hydrogen bonding probabilities, are probably
small. On this last remark, one should consider that the param-
eter values, as obtained from the fitting of binodals of aqueous
solutions, do arguably include implicitly the energetics of the
water (solvent). Thus a safer wording would be that the effects
of the water network distortion for the (ethylene oxide)/ethylene
copolymers are similar to the effects in poly(ethylene oxide)
aqueous solutions.

Higher fidelity mean-field approaches, including modifica-
tions based on a quasi-chemical lattice-fluid framework [30,31]
and on hydrogen bonding cooperativity [2,32], as well as molec-
ular based simulations [33], are the focus of current work, so as
to obtain more insights into the phase behavior – and ultimately
into quantitative design principles – of polymers with tunable
temperature response.
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Appendix A. Numerical procedure

Experimental polymer/water phase diagrams were fitted with
the present model using a nonlinear least-squares procedure.
Naturally, the fitting process involved the finding of numerical
solution of the system of equations (26) repeatedly for different
values of parameter ξ12. To facilitate the numerical procedure
and to avoid the finding of the trivial solution, equations (26)
were rewritten in the following equivalent form(

1 − μ1
B

μ1
A

)
1

x2
A − x2

B
= 0,

(
1 − μ2

B

μ2
A

)
1

x2
A − x2

B = 0 (A.1)

The system of binodal equations (A.1) and the equations of
state (20) was solved numerically using the trust-region dogleg

method [34]. It appears to be more logical to build a binodal
curve by solving for xB

2 and T for a series of xA
2 values, instead

of solving for xA
2 and xB

2 for every given temperature value. Due
to the system complexity, the choice of initial approximation is
crucial to the successful finding of the roots and has to be auto-
mated in order to be used in the fitting procedure. Fortunately,
the system of the spinodal equations has a much better tolerance
to the initial approximation, which allows to solve for a point
on the spinodal curve, which, in turn, can be used as a good
initial approximation for the solution of the critical point equa-
tions (taking into account the fact that the critical point is the
extremum of the spinodal curve). Taking two points closely on
opposite sides of the critical point provides a sufficiently good
initial approximation for the system of the binodal equations.
Naturally, after the first pair of binodal points is found, it is used
as the initial approximation for the solution at the next value of
xA

2 ; granted sufficiently small step size, the described algorithm
can be fully automated and can successfully construct a binodal
which can fit the experimental phase diagram data.

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.fluid.2007.06.018.
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