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ABSTRACT: The dynamics of a confined polymer melt between strong adsorbing surfaces is considered 
theoretically. In  particular the influence of bridging on the rheological behavior is investigated. I t  is 
shown that the bridges are very important for small enough shear velocities. Several regimes of 
qualitatively different rheological behavior depending on the shear velocity are predicted, one of the 
intermediate regimes being characterized by a power law decrease of the shear stress a8 a function of 
the velocity. 

1. Introduction 

The behavior of polymeric liquids under confinement 
differs in an essential way from that in the bulk if the 
polymer film thickness is of the order of the size of the 
polymer coil or smaller. This is due to the interaction 
between the polymer and the surface. Depending on 
the polymer-surface interaction, polymer chains can 
adsorb to the surface or be repelled by it. In the case 
of attractive surfaces in contact with a polymer melt an 
absorbed layer having a thickness of the order of the 
size of the polymer coil is formed. If the polymer system 
is confined between two plane surfaces separated by a 
distance smaller or comparable to the size of the 
polymer coil, nearly all chains are in contact with the 
surfaces. In this case the dynamical properties of the 
film strongly depend on the polymer-surface interaction 
and are directly connected to the dynamics character- 
izing the adsorbed chains. 

Recent e~perimentsl-~ as well as molecular dynamics 
computer sir nu la ti on^,^^^ devoted to the study of the 
dynamics of confined polymer films under shear flow, 
demonstrate that for an increasing shear velocity the 
behavior of the system becomes nonlinear. In addition, 
experiments show that under oscillatory shear with a 
small amplitude the behavior of the confined layer is 
viscoelastic, whereas for greater amplitudes a transition 
to liquid-like behavior occurs. 

The aim of the present study is to investigate theo- 
retically the rheological behavior of a thin polymer film 
confined between two plane surfaces and under shear 
with a constant imposed velocity, and in particular to 
determine the dependence of the shear stress on the 
imposed velocity. We distinguish three situations: a 
linear regime at  low shear rates, an intermediate 
situation, when nonlinear dynamics of bridges is im- 
portant, and a high shear rate regime where bridges 
are no longer present. 
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2. Equilibrium Properties 

The equilibrium properties of an adsorbed polymer 
layer under different conditions have been investigated 
in a number of previous st~dies.69~ In contrast to the 
case of a polymer solution near a solid surface, equilib- 
rium properties of an incompressible melt do not depend 
on the interaction with the surface. Thus, in particular, 
polymer chains in a melted polymer layer locally obey 
Gaussian statistics8r9 (which is generally known to be 
valid for polymers in melts-the so-called Flory theorem; 
see ref 8). The global effect of the solid walls on the 
chain statistic can be accounted for by the mirror-image 
principle.1° In the equilibrium there is no long range 
interaction between the surfa~es.~Jl 

We assume that the chains consist of N statistical 
segments of length a and volume per segment 6. The 
thickness of the confined film (h )  is assumed to be 
smaller or equal to the size of the coils (h  I awl2).  
Hence, the area of contact per segment is 6/a, and an 
adsorbed chain has on average N d h  number of contacts 
with the surfaces. 

It is convenient to consider a polymer chain as a 
sequence of blobs of size h, each blob consisting of go - 
h2/a2 segments. A finite fraction of the blobs (e.g. 4 2 )  
must form bridges between the surfaces (a blob is called 
a “bridge” if it has contacts with both walls12); each 
bridge implies of order go” - h/a contacts with the 
surfaces. The average number of bridges per unit area 
is Y@O) - h/6go - a2/(h6). 

3. Shear Stress: The Effect of Bridges 
3.1. Linear Regime. Shear flow is imposed by 

moving one of the surfaces with respect to the other with 
a constant velocity u. In this case, the behavior of the 
polymer segments in the vicinity of the surfaces and far 
away from it is different. The mobility of the segments 
in the middle part of the confined film is determined 
by a friction coefficient 50, whereas the motion of the 
adsorbed chain segments is governed by a friction 
coefficient 51 different from 50, due to  the surface 
potential with a typical scale -a. If the polymer 
-surface interaction is attractive, 51 might be much 
bigger than the fiction coefficient 50, 51/50 >> 1. Here 
it is assumed that this condition is satisfied. It is also 
assumed that entanglements are not important; i.e. the 
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q ( X )  = 1 + KIX + K F 2  + ... X < 1 

q(l) = (6) 

where ~ 1 ,  ~ 2 ,  ... are numerical coefficients. The relation 
like this is valid for the freely jointed model of a chain 
consisting of connected rigid segments with ~1 - ( l l ~ ) ~ ,  
where 1 is the length of the rigid segment and a is the 
statistical length.15 

When the bridge is stretched, the tangential deforma- 
tion rt due to nonlinearity (5 )  induces an additional 
normal force Afn = fn(rn,rt) - fn(rn,rt = 0) (in OU case r n  
= h). If the elongation is small, rt << ago, the relation 
connecting the tangential and normal force can be 
calculated by the perturbation theory: 

h I' \ \  

Figure 1. Bridge in the linear regime. 

chain lengths considered are below the entanglement 
threshold. 

Obviously, bridges can have an essential influence on 
the dynamical behavior of confined systems. In the 
steady state there is an equilibrium between the break- 
age and formation of bridges. The dynamics of forma- 
tion of contacts with the surface, in the case of strong 
adsorption, is determined by the surface friction. Let 
us consider an arbitrary blob containing g segments 
near one of the surfaces; the blob must have -gu2 
contacts with the surface. The total friction coefficient 
for the blob is thus given by 

The relaxation time (adsorption and desorption time), 
tg, is the diffusion time of the blob over a distance of its 
size r, - agm; the effective diffusion constant is D, = 
1/Cht (here and below ~ B T  is chosen as the unit of 
energy). Therefore 

(2) t, - r, 2 ID, = a2gf',, tg2 + tlg3I2 

where to - 5m2 is the relaxation time of a segment in 
the bulk and z1 - <la2 is the relaxation time near the 
surface. Here we will consider exclusively the case of 
strong adsorption: go << (z~/zo)~; thus the second term 
in eq 2 dominates and the first one can be omitted for 
any blob adsorbed to the surface. 

When a velocity u is imposed, the bridges start to 
elongate, the maximum elongation force being equal to  
the friction force on the surface (Figure 1). If the 
velocity is small and the chain is Gaussian (regime 11, 
the friction force per one bridge is given by 

ft - u51gou2 (3) 

The shear stress can be defined as the product of the 
friction force and the surface concentration of the 
bridges YQO) - a2/(h6) 

at - (auC1)1z.9 (4) 

3.2. Nonlinear Regime. 3.2.a. Statistics of 
Bridges. The response of the bridges becomes more 
complicated if we take into account the limited exten- 
sibility of chains.13J4 Let us assume that a bridge 
consisting of go segments is characterized by the fol- 
lowing general relation between the elastic force f and 
the end-to-end distance (elongation) r: 

and the normal force is small compared to the thermal 
force fn - llh. If rt - ago and Q, >> 1, then fdft = tan a 
= h/ago,  where a is the angle between the slope of bridge 
and plane (Figure 2): 

1 4fn-;ft ft', (7b) 

The dynamics of adsorption of a blob onto the surface 
is governed by this additional normal force, A&. If the 
typical energy associated with the normal force is small 
in comparison with k B c  i.e. wnh << 1, then the effect of 
the force is negligible. On the other hand, in the case 
hAfn > 1, the normal force strongly pulls the blob away 
from the surface thus preventing an adsorption of the 
go blob. However a smaller blob with a number of 
segments g < go can possibly still adsorb, since the 
normal force limiting the adsorption depends on g. 

The condition hAfn - 1, together with eqs 3 and 7a, 
gives the critical velocity 

a a  
u1=-- 

z1 h 

For u < u1 eq 4 is applicable. This linear regime will 
be denoted as regime 1. 

For higher velocities, u 7 u1, the maximum go blob 
can no longer be adsorbed, and the typical size of a blob 
that can be adsorbed is g < go. A bridge in this regime 
consists of at least two g blobs in contact with the 
opposite surfaces, and a middle part containing -go 
links. 

Let us estimate g. Note that for u > u1 the (maxi- 
mum) friction force, f t  > l /a,  and therefore a bridge will 
be almost completely extended by the force. Immedi- 
ately afier formation, a bridge starts to elongate with 
velocity u. After a time 

t - agdu (9) 

it attains the maximum elongation -ago. At this 
moment the tangential stretching force reaches a maxi- 
mum equal to 

f, - 41gu2 (10) 

with 
where g is the number of segments in the characteristic 
blob that manages to create surface contacts during this 
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The concentration of bridges is thus much smaller than 
the concentration of go blobs, v(g0) - a2/hu. Therefore 
only one go blob per 

q - v(go)/v(g) - ( h ~ t , / a ~ ) ‘ ~  (16) 

go blobs form a bridge. 
Now we can estimate the average “lifetime” of a go 

blob in a free state (without bridging) as the time of 
order 

U - 

Figure 2. Bridge in the regime of strong elongation. 

time t .  Equating the relaxation time of a g blob (eq 2) 
and the elongation time, t ,  we get 

(11) g - (t/zJY3 - (h2/a~zl)Y3 

Note that g - go for u = u1. 
Our next task is to derive an expression for the 

surface concentration of bridges. Let us therefore 
consider a polymer chain as a sequence ofg blobs. Any 
part of the chain that has contacts with one of the 
surfaces must be repelled (pulled away) from the other 
one via the mechanism of bridge elongation. This 
repulsion can be formally taken into account by the 
condition that the concentration of the g blobs belonging 
to a chain in contact with one wall must tend to zero in 
the vicinity of the other wall. We will assume that the 
effect of the flow on the bridge distribution reveals itself 
only in this change of the boundary conditions, the 
distribution being quasi-equilibrium otherwise. The 
concentration of the g blobs at  a distance x from the 
adsorbing surface is w2(x),  where V ( x )  is the order 
parameter.8J6 Here we must introduce two parameters 
1/11 and 1/12 that describe the distribution of blobs of the 
chains adsorbing to the two different surfaces. The free 
energy per unit area depends on 1/11 and ~2 through the 
relation16 

This free energy should be minimized for the appropri- 
ate boundary conditions and the condition of dense 
packing: 

q l 2 = 0  qz2= l/(gO) 2 = 0  

q12= l/(gO) q i ~ ~ ~ = 0  x = h  

$h12 + q; = l/(gO) (13) 

After minimization we get 

q: (x )  = l/(gO) sin2(m/2h) 
1/1: = l/(gO) cos2(m/2h) (14) 

The surface concentration of g blobs is defined as the 
number of blobs per unit area inside the adsorbed layer 
of thickness 6 = agy2 and is given by 

Each bridge corresponds to one surface blob, so the 
concentration of the bridges is also defined by eq 15. 

t* - tq - z,(~/ut , )”~(hla)~’~ (17) 

This time exceeds the Rouse relaxation time of the 
bridge zgo2 if the velocity u < u*, where 

(18) 

As long as u -= u*, the quasi-equilibrium approach used 
to calculate the surface concentration of bridges is valid. 
3.2.b. Regime 2. Let us assume that this condition 

is satisfied (a verification is given in the last section) 
and calculate the shear stress. After the time t given 
by eq 9 the elongation of the bridge attains its maximum 
value. Then the tangential force will be of the order of 
the surface friction force (10). In accordance with eq 
7b the normal force induced by this tangential force is 

(19) 

Let us consider the region u1 < u < u2 (regime 21, where 
the upper limit 

(20) 

is derived below. Here the normal force is in the range 
l/h < fn < l/a. In order to calculate the shear stress 
for this case we must know the average “debridging 
time”, that is the time during which the strong friction 
force f t  is acting. This time can be defined as the time 
that is needed to move the adsorbed blob on a large 
enough distance d from the wall. This distance can be 
estimated in the following way. The chain conformation 
at  some intermediate state of debridging is shown 
schematically in Figure 2: here n segments have been 
already pulled from the (upper) surface by the strong 
elastic force f - f t  - 51uglf2 >> lla. The detached part 
of n segments is thus strongly stretched: its length is 
of order nu. Therefore the typical separation of this part 
from the wall is 

(21) 

This separation is irreversible (i.e. the n part cannot 
form contacts with the wall again) if d ,  is larger than 
the typical scale of fluctuation displacement in the 
normal direction, dfl, for the links of an n part. The 
latter is determined by the elastic force (which is equal 
to the friction force) 

d,, - nu tan a - na2/h 

d ,  - (an/f,)112 (22) 

The condition d,, - dfl gives the critical separation d ,  
and simultaneously the critical size of the separated 
part. Using eqs 21 and 22, we thus get (for n - g) 
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d - d, - d, - ~ ( a l u z , ) ~ ~ ( h l a ) ~ ~  (23)  

Under the influence of the normal force the adsorbed 

v = udh  (24)  

Thus the “breaking time” is z - dlv. The average shear 
stress can be estimated as 

blob moves out of the surface with the velocity 
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Equation 23 is valid if d > a. Using eq 23 the last 
condition can be rewritten as u < u2 with u2 given by 
eq 20. 

3.2.c. Regimes 3 and 4. Let us consider the region 
of even larger velocities u;! < u < u3 (regime 31, where 

(26)  

is defined from the condition g - 1. In this region the 
characteristic debridging distance d - a and the “break- 
ing time” is t - a h .  The shear stress in this case can 
be calculated by using eq 25 

ut---  I ( u ~ I ) ~ ~ ( c z ) ~ ’ ~  
6 a  (27)  

When the imposed velocity u > u3 (regime 41, only 
one segment can attain the surface. During the time t 
the segment can penetrate over a distance 

A - a(t/z,)‘” (28)  

into the viscous surface layer, with A < a. The cor- 
responding “break time” is z - hlv, and the shear stress 
is given by 

ut - u~lY(l)t/t - - 1(ur1)1/2($ - (29) 6 a  

So far we consider the contribution of the bridges to 
the shear stress. The second part of the shear stress is 
connected with the dissipation in the bulk. This part 
is equal to  the friction between two penetrating layers 
of thickness h.  The calculations show that “bulk” 
contribution to the shear stress is 

~ t ( ~ )  - uhtda26 (30) 

Equation 30 is valid if u < u4, where the velocity u4 is 
defined below. Note that in all the regimes considered 
so far the “bulk” contribution is negligible: ut(b) << ut. 

4. Regime of High Shear Velocities 
At this point it is important to take into account the 

influence of the flow on the conformations of the chains. 
The characteristic friction force, that impacts on a bridge 
(on a chain part containing go links), is 

ft - 5ougo (31)  

This force induces an additional normal force in ac- 
cordance with eq 7 

(32)  

n 
I 1  

Figure 3. Chain elongation due to the flow. 

Obviously, this force is smaller than the thermal 
fluctuation force l lh,  if u < u4, where 

(33) 

Now let us assume that u > u4 (regime 5).  Here a bridge 
formation is nearly impossible: any loop (attached to, 
e.g., the bottom surface; see Figure 3) that might tend 
to form a bridge is compressed by the normal force Afn, 

eq 32, which effectively confines the loop in a layer of 
thickness 5 - l/Afn near the bottom wall. Therefore the 
bridge contribution to the stress is negligible in this 
region. In order to calculate the stress due to the chain 
parts that do not form bridges let us consider the blob 
consisting o fg  segments and having the typical size in 
the normal direction 6 - agy2. The flow will stretch 
this blob by the friction force 

ft - 5&t (34)  

where p = ulh is the shear rate. Let us assume that 
the force is large enough cft > Vu),  so that the blob is 
almost completely extended along the flow (its size in 
this direction is thus - gu). The force f t  induces the 
force in the normal direction, that tends to compress 
the blob14 

Af, - f, tan a 2: f,U(ga) (35) 

In the steady state this force is compensated by the 
thermal restoring force which is of order -11’6. The 
condition Afn - 1/6 thus gives the characteristic size of 
the blob 

(36) 

Obviously, 6 < h when the shear velocity u > u4. In 
this case the flow strongly elongates the chains, so that 
each chain is effectively confined in a layer of thickness 
5 (Figure 3). The dissipation per unit volume is 

D - l;O(po2l6 (37)  

Thus the stress is 

5. Discussion and Conclusions 
For all regimes (1)-(5) to be realized (the full picture 

of the regimes is shown in Figure 4), the inequalities 
u3 < u4 and u4 < u* must be satisfied. The last 
condition is valid, when (hla) < (z~/zg); that is, it 
coincides with the condition of validity of the whole 
scheme (strong friction). The first condition is valid if 
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Figure 4. Plot of the shear stress vs the velocity. 

(hlu) < (tl/z~)l'~. Thus for the very strong friction we 
have the following dependence of the shear stress on 
the imposed velocity 

(39.1) 

(39.5) 

Equation 39.1 describes the linear regime, where the 
surface friction force is smaller than lla; regime (39.2) 
corresponds to higher velocities implying that the 
maximum blob go does not typically have enough time 
to create of the order ofgo" contacts with both surfaces. 
The normal force, which pulls the blob out of the surface 
obeys the inequality llh < f n  < l/a. The shear stress 
in this case decreases with increasing velocity as power 
-1/3. If a permanent velocity is imposed, the shear 
stress is uniquely defined by it and there is no reason 
for an instability. In regime (39.31, the normal force 
exceeds lla, but the bridge has more than one contact 
with the surface. The shear stress increases in this case 
with a power (ll3). In regime (39.4) only on the order 
of one segment can penetrate into the viscous layer. For 
the very high velocities (regime 5 )  the flow compresses 
the chains, so that bridges can no longer be formed. So 
the bridge contribution to the stress drops rapidly in 
the crossover region (between regimes 4 and 5 )  thus 
giving rise to a sharp decrease of the total stress in this 
region. The shear stress is described by eq 39.5 in 
regime 5. Note this implies that viscosity 71 = u+/y - 

If the ratio (hla) obeys the condition (21/20)~~ < (h/u) 
< ( t l l z ~ ) ~ ~ ,  regimes (l), (2), (31, and (5) are all realized; 
if ( t ~ / z o ) ~ ~  < (hla) < (z~/zo), only regimes (11, (21, and ( 5 )  
can be realized. When (ZI/ZO) < (h/u), the surface friction 
is small and the surface slip starts to  be im~0r tan t . l~  
Our calculations can be compared with experimental 

results from ref 1. The experimental plots for two types 
of the polymers (linear Fomblin Z and branched Fomblin 

9-2/3,  

2 - 
v) l.OO i 

0.01 ' I 
100 200 500 1q 2000 

shear rate: u/h (sec ) 
Figure 5. Shear stress vs shear rate: comparison with 
experiments.' 

Y) are shown in Figure 5. In the same figure two lines 
with slopes of -1/3 and 1, respectively, are drawn to 
compare the experimental behavior with the predicted 
scaling behavior. The behavior of the linear polymer 
(Z) (a decreasing shear stress vs the shear rate) is in 
good qualitative agreement with regime 2. The behav- 
ior of the polymer 0 can be accounted for by the 
theoretical regime 1 (where the stress increases with 
shear rate according to the linear law). For the same 
shear velocity these polymers may fall in different 
regimes because they have different segmental surface 
and bulk friction parameters. It is not unreasonable 
to assume that the 0 polymer has a smaller surface 
friction, 1;1, and therefore, the reduced velocity u/u1 
might be smaller for polymer Y simply because u1 is 
larger. 
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