Thermal and Mechanical Analysis of Covalently Linked Silica/Isotactic Polypropylene Nanocomposite

Shikchya Tandukar1, Georgios Polyzos2, Evangelos Manias3 and Ayusman Sen1

1Department of Chemistry 2Department of Materials Science and Engineering, The Pennsylvania State university, University Park, PA 16802

INTRODUCTION

Isotactic polypropylene (i-PP) is of great commercial importance and their thermal and mechanical properties can be enhanced by adding fillers, fibers and particles1. However, these properties are dependent on the compatibility of hydrophobic polypropylene and hydrophilic fillers. The compatibility can be increased by chemical modification of the polymer and the filler2. The polymer can be modified using silane, siloxane or silylating agents. In fact, nanoparticles are being increasingly used as fillers due to their high surface area to volume ratio.

Crosslinking of PP using siloxane moieties have been reported. In this work, we want to report a new method of making nanocomposite where silica nanoparticles are covalently linked to i-PP using silane moieties. Isotactic polypropylene (i-PP) was modified by grafting vinyltrimethoxysilane (VTMS) using either benzoyl peroxide (BP) or dicumyl peroxide (DCP) as initiator. The silane end reacts with hydroxyl moieties. Isotactic polypropylene (i-PP) was modified by grafting VTMS onto i-PP using either DCP or BP. Although DCP is a common initiator reported for grafting processes, polymer chain scission is known to occur whereas degradation of the chain is not observed while using BP3. i-PP with silane moieties were analysed by FTIR and the appearance of absorbance peaks at 808, 1102 and 1219 cm−1 corresponding to Si-OCH3 group confirmed the grafting of VTMS4.

EXPERIMENTAL

Materials. All the chemicals were purchased from Aldrich Chemical Co. and used without further purification. The silica nanoparticles were Ludox-SM, 30 wt.% SiO2, particle size 7 nm, pH 10 and the Mw of i-PP was 250,000.

Instrumentation. Silane grafted i-PP was analysed by IR. The TEM images were taken with JOEL 1200EXII operating at 80 kV. The samples were prepared by microtoming the nanocomposite embedded in the resin and the ultrathin sections were then mounted on to carbon coated copper grids (200 mesh). Differential Scanning Colorimetry (DSC) measurements were taken in TA instruments DSC 2920 for all samples. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images were taken with JOEL 1200EXII operating at 80 kV. The results obtained from the DSC measurements were in good agreement with the results obtained from FTIR spectra.

Grafting Silane Moieties to i-PP. i-PP was dissolved in degassed 1,3-dichlorobenzene at 140 °C under nitrogen atmosphere. Vinyltrimethoxysilane (VTMS) (4%) and initiator (0.4%) was added. The reaction mixture was heated at 140 °C for 8 min and then at 100 °C for 12 min, followed by immediate precipitation in excess acetone. The precipitate was separated, washed with acetone and dried under vacuum to obtain white fluffy solid in quantitative yield.

Synthesis of Nanocomposite. Fine powder of silane grafted i-PP was shaken vigorously with Ludox colloidal silica for 48 hrs which was then washed with water and then with acetone and dried under vacuum.

RESULTS AND DISCUSSION

Nanocomposite Synthesis and Characterization. VTMS was grafted onto i-PP using either DCP or BP. Although DCP is a common initiator reported for grafting processes, polymer chain scission is known to occur whereas degradation of the chain is not observed while using BP3. i-PP with silane moieties were analysed by FTIR and the appearance of absorbance peaks at 808, 1102 and 1219 cm−1 corresponding to Si-OCH3 group confirmed the grafting of VTMS4.

The nanocomposite was prepared by forming siloxane linkage between the grafted VTMS and colloidal silica particles.

Table 1. Tc and ΔTc Values for Neat i-PP and Nanocomposites at Different Cooling Rates

<table>
<thead>
<tr>
<th>Cooling rate (°C/min)</th>
<th>Tc (°C)</th>
<th>ΔTc (°C for Si/i-PP/DCP)</th>
<th>ΔTc (°C for Si/i-PP/BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat i-PP</td>
<td>116.2</td>
<td>122.6</td>
<td>123.3</td>
</tr>
<tr>
<td>Si/i-PP/DCP</td>
<td>116.2</td>
<td>122.6</td>
<td>123.3</td>
</tr>
<tr>
<td>Si/i-PP/BP</td>
<td>116.2</td>
<td>122.6</td>
<td>123.3</td>
</tr>
</tbody>
</table>

REFERENCES