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Abstract 

Understanding the structure-property relations in polymer/clay nanocomposites is 
of great importance in designing materials with desired properties. Along these 
lines, a critical overview is attempted on the physical and molecular origins of ma- 
terial properties in polymer/clay hybrid nanocomposites. A comparative discussion 
of mechanical, thermal, optical, and flammability properties across various poly- 
mers focuses on those properties that are universally improved. In general, such 
properties originate from the nature of the layered inorganic fillers and from their 
nano-dispersion in a polymer. In contrast, other properties are determined by the 
particular/distinctive interactions between a specific polymer with the filler; such 
attributes can not be transfered from one polymer system to another. We shall try 
to distinguish between these two classes of properties, and provide some insight into 
which properties can be improved concurrently across a wide range of polymers. 

Introduction 

The very large commercial importance of polymers has also been driving an intense 
investigation of polymeric composites reinforced by particulates, fibers, and layered 
inorganic fillers [1, 2]. In particular, in the case of layered inorganic fillers, talc and 
mica had been traditionally attracting the most interest. However, recent advances 
in polymer/clay and polymer/layered-silicate nanocomposite materials [3, 4] have 
aspired efforts to disperse clay-based fillers in almost any polymer available, usually 
expecting that complete exfoliation of the inorganic fillers in the polymer would yield 
the best performing systems. 
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Although it has been long known that polymers can be mixed with appropriately 
modified clay minerals and synthetic clays [5,6], the field of polymer/clay nanocom- 
posites has gained a large momentum recently. Two were the major findings that pio- 
neered the revival of these materials: Firstly, the report of a nylon-6/montmorillonite 
material from Toyota research [7], where very moderate inorganic Ioadings resulted 
in concurrent and remarkable enhancements of thermal and mechanical properties. 
Secondly, Giannelis et al found that it is possible to melt-mix polymers with clays 
without the use of organic solvents [8]. Since then, the high promise for industrial 
applications has motivated vigorous research, which revealed concurrent dramatic 
enhancements of many materials properties by the nano-dispersion of inorganic lay- 
ered fillers [9-12]. Where the property enhancements originate from the nanocom- 
posite structure, these improvements are generally applicable across a wide range of 
polymers [4]. At the same time, there were also discovered property improvements 
in these nanoscale materials that could not be realized by conventional fillers, as for 
example a general flame retardant character [13] and a dramatic improvement in 
barrier properties [14, 15]. 

Although there exist many different natural and synthetic clays, dispersible in 
various polymers, in this paper we shall draw examples from polypropylene (PP) and 
montmorillonite (mint) [16]. Montmorillonite is a naturally occurring 2:1 phyllosil- 
icate, which has the same layered and crystalline structure as talc and mica but a 
different layer charge [5,6]. The mint crystal lattice consists of l n ~  thin layers, with 
a central octahedral sheet of alumina fused between two external silica tetrahedral 
sheets (in such a way, so that the oxygens from the octahedral sheet also belong 
to the silica tetrahedra). Isomorphic substitution within the layers (for example, 
AI +3 replaced by Mg +2 or Fe +2) generates a negative charge -defined through the 
charge exchange capacity (CEC)- and for mmt is typically 0.9-1.2 ~eq/9 depend- 
ing on the mineral origin. These layers organize themselves in a parallel fashion to 
form stacks with a regular van der Walls gap in between them, called interlayer or 
gallery. In their pristine form their excess negative charge is balanced by cations 
(Na +, Li +, Ca +2) which exist hydrated in the interlayer. Obviously, in this pristine 
state mint is only miscible with hydrophilic polymers, such as poly(ethylene-oxide) 
and poly(vinyl-alcohol) [14,17]. In order to render mmt miscible with other polymers 
it is required to exchange the alkali counterions with cationic-organic surfactants, 
such as alkyl-ammoniums [3, 4]. 

Nanocomposite Formation & Structure 

The thermodynamic challenge. In general, an interplay of entropic and en- 
thalpic factors determines the outcome of whether an organically modified mint 
(o-mint) will be dispersed -intercalated or exfoliated- in a polymer [18]. Dispersion 
of mint in a polymer requires sufficiently favorable enthalpic contributions to over- 
come any entropic penalties 1. Favorable enthalpy of mixing for the polymer/o-mint 

1 confinement of the polymer inside the interlayers results in a decrease in the conformational 
entropy of the polymer chains. However, this entropic penalty of polymer confinement may be 
compensated in part by the increased conformational freedom of the tethered surfactant chains, 
that are located in a less confined environment as the layers separate [18] 



is achieved when the polymer/mint interactions are more favorable compared to the 
surfactant/mmt interactions [18]. For most polar or polarizable polymers, an alkyl- 
ammonium surfactant (the most commonly used organic modification) is adequate 
to offer sufficient excess enthalpy 2 and promote the nanocomposite formation. 
General polymer/clay nanocomposite structure. Due to its easiness and its 
availability X-Ray DifFraction (XRD) is most commonly used to probe the nano- 
composite structure. However, the XRD can only detect the periodically stacked 
mmt layers; disordered (bunched together but not parallely stacked) or exfoliated 
layers are not detected. In general, in natural-clay filled polymers with favorable 
thermodynamics for nanocomposite formation, the structure is characterized by a 
coexistence of exfoliated, intercalated and disordered layers. In figure 1 we show 
a bright-field TEM of a maleic anhydride functionalized polypropylene (PP-r-MA) 
nanocomposite, containing 6 wt% of 2C18-mmt. From the TEM it becomes clear 
that there are intercalated tactoids and disordered/exfoliated stacks of layers co- 
existing in the nanocomposite structure. Only the intercalated structures give rise 
to XRD reflections as those of figure 1, whereas the disordered mint formations 
have no periodic stacking and thus remain XRD silent. This behavior is common 
for most polymer/mint nanocomposites [3, 4], and typically the larger -in lateral 

2 excess enthalpy in the sense of polymer/mmt interactions being more favorable than the 
alkyl-surfactant/mmt interactions 
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Figure 1: Bright-field TEM (left) of a PP/mmt nanocomposite, where polypropylene 
has 0.5 mol% of maleic-anhydrite styrene comonomers [16]. There is a coexistence 
of intercalated, disordered, and exfoliated mint structures. The corresponding XRD 
(right: b) shows a nice reflection at 2.gnm. PP/mmt nanocomposites with different 
functionalizations [1 mol% methylstyrene (a), and 0.5 mol% hydroxy-propyl-styrene 
(c)] show very similar XRD, albeit containing different levels of exfoliated layers [16]. 



size- mmt layers create intercalated tactoids, whereas the smaller layers tend to 
exfoliate 3. The mixed exfoliated/intercalated structure is intrinsic in mmt-based 
nanocomposites and originates from the chemical and size inhomogeneities of the 
mmt layers. Only in very high lateral size (>3#~)  layered fillers (such as vermicul- 
lites or synthetic fluorohectorites) there develops a single intercalated structure for 
all the tactoids [19]. 

To be on the safe side, XRD should be always accompanied by TEM investiga- 
tions, since generally there is a coexistence of structures: thus, a silent XRD may 
hide a large number of disordered tactoids, whereas an XRD with an intercalated 
peak may not reveal extensive levels of exfoliation (fig. 1). In both cases, the nano- 
composite properties can be dramatically affected by the structures that are not 
manifested in the XRD. 

If needed, quantitative analysis of TEM images can be used to evaluate the 
percentage of silicate exfoliation. For example, the numbers reported on fig. 1 were 
evaluated as follows: For each nanocomposite material we capture 20 to 40 indepen- 
dent TEM images at 50K magnification (a view of approx. 4x5#~) .  Subsequently, 
we use image analysis software to enumerate: (a) the total number of layers seen 
edge-on; (b) the layers in stacks of more than 10 layers separated by less than 3n~ 
(intercalated tactoids); and (c) bunches of up to three layers that are separated 
by more than 50rim (exfoliated layers) or non-parallel layers separated by less than 
20rim (disordered layers). The percentage of the last group is an estimation of the 
exfoliated and disordered structures in the system. Admittedly, these definitions are 
ad-hoc and 20-40 images cover too small an area to carry a high statistical signifi- 
cance, however, for the particular study they were sufficient to contrast the different 
PP/mmt nanocomposite structures [16]. 
Exfoliated structures by "trapping" layers apart. In many cases, polymer/clay 
systems that do not have favorable thermodynamics for nanocomposite formation, 
can be "trapped" in exfoliated structures (through solvent casting, or high shear- 
rate/high temperature extrusion). Such trapped structures are usually not ther- 
modynamically stable nor amiable to further processing. In fig. 2, we show the 
XRDs of precipitated PP/mmt hybrids from a co-suspension of polypropylene and 
o-mint in trichloro-benzene (similar structures can be obtained from high ~ extru- 
sion [20-23]). Subsequently, we process these "hybrids" by compression molding (at 
180°C/15 tons). This allows for the polymer to melt and the trapped hybrid struc- 
ture to relax. If the o-mint dispersion is not thermodynamically favored the layers 
will collapse in low d-spacing parallel stacks (e.g. neat-PP/dimethyl- dioctadecyl- 
ammonium-mmt fig. 2 left) during the high temperature processing, leading to 
a conventionally-filled 'macro'composite. However, if the there exists a favorable 
free energy of the o-mmt/polymer mixing, the exfoliated structure may be retained 
(e.g. PP-MA/dimethyl-dioctadecyl-ammonium-mmt fig. 2 right). This approach 
can yield stable dispersions only for polymers with strong specific interactions with 
mmt (e.g. polymers that hydrogen bond to the silicates, such as poly(vinyl alco- 
hol) [14], poly(urethanes) [15], and nylon-6) it is striking that only 0.5 mol% of MA 

3 this behavior should be very familiar to anyone that has ever calculated the surface forces 
necessary to separate two colloidal plates, such a force scales with the plate area 
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Figure 2: The structure evolution/stability of neat-PP/2C18-mmt (left) and PP- 
MA/2C18-mmt (right) 'nano'composites, that were initially (0 min) trapped apart. 
XRD studies of compression molded samples are shown. For the neat-PP, 2C18- 
mmt very fast collapses to intercalated/immiscible tactoids, whereas for the MA- 
functionalized PP, the trapped exfoliated structure is maintained even under pro- 
longed annealing. This suggests that the MA groups have sufficiently strong inter- 
actions with the mmt to prevent the polymer from sliding away from the fillers. 

can have the same effect in PP. 
As expected, mechanical shear markedly reduces the time necessary for the struc- 

ture relaxation, and the structure of figure l(b) is recovered after 8 min of mixing 
(extrusion at 180°C). In concert, trapped systems of neat-PP/2C18-mmt even af- 
ter very moderate mixing (1-3 min at 180°C) result in an immiscible/intercalated 
structure with a wide XRD reflection extending from 1.8 to 2.7n~ in d-spacing. 

At this point, we should note that this approach is qualitatively similar to the 
"swelling agent" approach, as for example by Wolf et al. [24]. In such approaches an 
alkyl-ammonium-exchanged montmorillonite is intercalated by an organic "swelling 
agent", such as ethylene glycol, naphtha or heptane (all with boiling points be- 
low the processing/extrusion temperature) [24]. Subsequently, the swollen organo- 
modified clay is compounded with PP in a twin-screw extruder at 250°C. At this 
processing temperature, the swelling agent evaporates leading to the formation of a 
'nano'composite which is XRD silent. In principle, this is the same as our solution 
intercalation experiment, where a solvent is employed to mix the o-mmt with the 
polymer, and an exfoliated structure is trapped when evaporating the solvent. 

Materials Properties 
M e c h a n i c a l  propert ies .  Most of the polymer/clay nanocomposites studies re- 
port tensile properties, as a function of mint content (q~mmt), characterized by 
Instron. As a typical example, in fig. 3 we compare tensile moduli from various 
studies by Instron of neat-PP/o-mmt and MA-functionalized-PP/o-mmt nanocom- 
posites, as well as respective "trapped" 'nano'composites. The characteristic behav- 
ior for polymer/layered-inorganic nanocomposite materials [4] is observed: Namely, 



there is a sharp increase of the Young's modulus for very small inorganic Ioad- 
ings (~o-mmt<4wt%) followed by a much slower increase beyond Co-mint -~5wt%. 
With increasing ~b~t, the yield stress does not change markedly compared to the 
neat-polymer value, and there is a small only decrease in the maximum strain at 
break. PP systems conventionally filled -no nanometer level dispersion- by the sim- 
ilar fillers (e.g. 2C18-mmt) do not exhibit as large increases in their tensile modulus 
(figure 3a). 

This mechanical reinforcement is expected and not too exciting at first glance. 
However, ther are some points that one can make: 

• as the polymer/inorganic adhesion is improved -e.g. when MA functional 
groups are added to the polymer- the stresses are much more effectively 
transfered from the polymer matrix to the inorganic filler, and thus a higher 
increase in the Young's modulus is achieved (fig. 3b) 

• the tensile results obtained from thermodynamically stable hybrids are not 
affected by processing conditions (since the nanocomposite structure remains 
the same) whereas, in absence of favorable PP/o-mmt thermodynamics, the 
structure and the tensile properties vary strongly with the processing condi- 
tions (fig. 3b) 

• similar improvements in mechanical properties can also be achieved by other 
layered particulate fillers, however, much higher filler Ioadings are required 
(e.g. by loading 30-60 wt% of talc or mica [26]) 
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Figure 3: Tensile moduli (relative to bulk value) &z HDT #or various PP/mmt 
nanocomposites. (a) neat-PP hybrids: with #-mmt (m, [15]), CI8-mmt (V, [21]), 
and 2C18-mmt (0 ,  [16]). (b) PP-MA//2C18-mmt nanocomposite (III, [16]), and 
PP hybrids with various PP-MA pretreated o-mmt: C18-mmt ~>, [20]), C18-mmt 
(0 ,  A, [21]), and CS-mmt (~7, El, [21]). 



Other Properties 
Beyond the mechanical improvements, the nanocornposite formation results in con- 
current enhancements of other materials properties [4]. Since tensile properties can 
also be improved by other means, the highest potential for any future applications 
of such nanocomposites do actually relate to these "other property" enhancements. 
In brief, we will discuss some examples that qualitatively set apart the polymer/clay 
nanocomposites from other conventional composites: 

Heat Deflection Temperature. If the mechanical reinforcement of PP due 
to the nanocomposite formation was limited only to the tensile modulus increase, 
this would have been an uninteresting system. The nano-dispersion of mint in 
the PP matrix also promotes a higher heat deflection temperature (HDT [25]). In 
the case of neat-PP/f-mmt there is a marked increase of the HDT, from 109°C 
for the neat polymer to 152°C for a 6 wt.% nanocomposite (fig. 4). When the 
same neat-PP polymer is filled with alkyl-ammonium modified mint the HDT is 
also increased but to a smaller extent, reflecting the lower exfoliation level of the 
inorganic fillers. Moreover, in the latter case, there is a strong dependance of the 
HDT on the processing conditions during the composite formation, similarly to the 
tensile properties. The increase of HDT due to mint dispersion is a very important 
improvement for PP, not only from the application/industrial viewpoint, but also 
because it is difficult to achieve similar HDT enhancements by chemical modification 
or reinforcement by other fillers [26]. 

The improvement of the HDT originates from the better mechanical stability 
of the nanocomposite, compared to the neat-PP, rather than any increase of the 
polymer melting point. In all the PP/mmt hybrids studied, the melting tempera- 
ture cloes not change markedly from that of the respective neat polymer. This is 
qualitatively different from the behavior of other polymers (e.g. nylon-6), where the 
mint layers stabilize a different crystalline phase than found in the neat polymer, 
with higher melting point and also higher HDT [7]. 

Organo-mmt 
filler loading 

 o-mmt[wt.% ] 
0 (neat PP) 

3 wt.% 
6 wt.% 
9 wt.% 

HDT [°C] 
neat-PP/ neat-PP/ 

f-mmt alkyl-mmt 
109 ±3 109 ±3 
144 ±5 a130 ±7 
152 ±5 b141 ±7 
153 ±5 

a C18-mmt filler, by extruder 
b 2C18-mmt filler, by twin-head mixer 

Figure 4: Heat Deflection Temperatures (HDT [25]) of PP/mmt nanocompos- 
ires and the respective unfilled (neat) PP. The f-mmt is mmt modified by semi- 
fluorinated alkyl-ammoniums [16], the alkyl-mmt is 2C18-mmt [15]. 

Barrier Properties. Generally, polymer/silicate nanocornposites are character- 
ized by dramatic reductions in gas 8z liquid permeabilities, and at the same time, 
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Figure 5: Water vapor permeability through polymer/mmt nanocomposites: poly 
(vinyl alcohol) [14], poly(urethane-urea) [15], and two PDMS 'nano'composites [4] 

the solvent uptake decreases accordingly. Some comparative water vapor perme- 
abilities are shown in fig. 5. Polymers ranging from epoxies and good sealants (like 
siloxanes [10]), to semi-permeable poly(urethane-ureas) [15], to very hydrophilic 
PVA [14], are all improved up to an order of magnitude, for 5-7 wt% mmt Ioadings. 
This improvement can be attributed to the path tortuosity, as well as the higher 
modulus promoted by the inorganic fillers, and thus, are strongly dependent on the 
hybrid structure (fig. 5). 

Flame retardancy. Montmorillonite-based fillers also promote the flame retar- 
dancy of polymers (fig. 6), across a wide range of different chemistries [13]. Cone 
calorimetry studies by Gilman et al, showed dramatic enhancements to polymers 
like PP, PS, nylon-6 and epoxies. This flame retardant character is traced to the 
response of a carbonaceous-char layer, which develops on the outer surface during 
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Figure 6: Mass loss rate from combustion of PP-MA/mmt hybrids (cone calorimetry 
study, from [13]). This is a general enhancement for a wide range of polymers [13]. 



combustion [13]: This surface-char has a high concentration of mmt layers and 
becomes an excellent insulator and a mass transport barrier (slowing the oxygen 
supply as well as the escape of the combustion products generated during decom- 
position) [13]. 

Optical Clarity. Albeit their micron lateral size, clays are just into thin. Thus, 
when single layers are dispersed in a polymer matrix the resulting nanocomposite 
is optically clear in the visible region (fig. 7). At the same time, there is a loss of 
intensity in the UV region (for X<300nm), mostly due to scattering by the mmt 
particles. There is no marked decrease in the clarity due to nano-dispersed fillers 
compared to that of the neat -unfilled- polymer (for any relevant 4 o-mmt loadings 
q~ _<9 wt%). This is a general behavior as seen by UV/vis transmittance for thick 
films (3-5ram) of polymer/mmt nanocomposites, based on PVA [14], PP [16], and 
several epoxies. 
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Figure 7: UV//vis transmittance for MA-frunctionalized PP and its mmt nanocom- 
posites as a (unction of  mmt loading (q~o-mmt). From [15]. 

Processing and synergy with other fillers. Where there exist favorable ther- 
modynamics for polymer/clay miscibility, the organo-clay can be incorporated in 
the final stages of polymer processing (e.g. extrusion, inJection/compression mold- 
ing) and obtain nanocomposite hybrids. Thus, polymer/mmt nanocomposites are 
amiable to most of the common processing techniques in today's industrial prac- 
tices, which lowers the barriers towards commercialization for these nanocomposite 
hybrids. Additionally, o-mmt fillers can be used in conjunction with other reinforce- 
ments, such as fibers, thus combining the nanocomposite improvements and those 
from the fiber reinforcement in one composite material. 

4 only beyond a loading of 20 wt% 2Cl8-mmt in 3ram-thick films of PP there develops some 
haze observable by the bare-eye 



Conclusions 

For polymer/organo-clay systems with favorable thermodynamics of mixing, nano- 
composite formation can be achieved by melt-intercalation (unassisted by mechani- 
cal shear or solvents), extrusion, and compression/inJection molding. The structure 
of these nanocomposites (nano-dispersion of fillers) does not change markedly with 
processing, since it is dictated by the thermodynamics. For naturally occurring fillers 
(such as mmt) there usually coexist exfoliated, disordered and intercalated layers. 

Due to the nanocomposite structure, the hybrids exhibit concurrent improve- 
ments in several materials properties, for very moderate inorganic loadings (typically 
less that 6 wt% of mmt). Enhanced properties include improved tensile characteris- 
tics, higher heat deflection temperature, high barrier properties, and increased flame 
retardancy. At the same time, optical clarity and light weight are largely maintained. 
Since most polymer/clay nanocomposites are amiable to common processing tech- 
niques -and can be further reinforced by traditional fillers, such as fibers- these 
hybrid materials hold a high promise for pushing the envelope of usage for each 
polymer towards new potential applications. 
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