
Step Strain Experiment
STRESS RELAXATION

Sample is initially at rest
At time t = 0, apply instantaneous shear strain γ0

The shear relaxation modulus

G(t, γ0) ≡ σ(t)/γ0 (2-1)

For small strains, the modulus does not depend on strain. Linear vis-
coelasticity corresponds to this small strain regime. Linear response means
that stress is proportional to the strain, and thus the modulus is independent
of strain.

σ(t) ≡ G(t)γ0 (2-3)

Figure 1: Stress Relaxation modulus of linear polymers. A is monodisperse
with Mw < MC , B is monodisperse with M � MC , and C is polydisperse
with Mw �MC . Linear polymers are viscoelastic liquids.
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Step Strain Experiment
STRESS RELAXATION

RC-3 is a linear polybutadiene Mw = 940, 000 and Mw/Mn < 1.1. The
glass transition of this polymer is Tg = −99◦C.

Figure 2: Stress Relaxation after a Step Strain.
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Multiple Step Strain Experiment
BOLTZMANN SUPERPOSITION

PRINCIPLE

Figure 3: Sequence of Step Strains in the Multiple Step Strain Experiment.

All strains in the sequence are small so the response is linear.
The first strain δγ(t1) is applied at time t1.

σ(t) = G(t− t1)δγ(t1) t1 < t < t2 (2-4)

The second strain δγ(t2) is applied at time t2.
The Boltzmann Superposition Principle states that the stresses from the

two deformations are additive:

σ(t) = G(t− t1)δγ(t1) + G(t− t2)δγ(t2) t2 < t < t3 (2-5)

Boltzmann Superposition holds for any combination of small strains.

σ(t) =
N∑

i=1

G(t− ti)δγ(ti) t > tN (2-6)
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For any smooth strain history we can write

σ(t) =

∫ γ(t)

0

G(t− t′)dγ(t′) text ahs typo! (2-7)

dγ(t′) = γ̇(t′)dt′, so

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (2-8)

The −∞ integration limit reminds us that we must include all of the
strain history of the sample. In practice we often start with a stress-free
sample at t = 0, and then we write

σ(t) =

∫ t

0

G(t− t′)γ̇(t′)dt′ (2-9)

The Boltzmann Superposition applies to more general flows

τij(t) =

∫ γij

0

G(t− t′)dγij(t
′) (2-10)

τij(t) =

∫ t

−∞
G(t− t′)γ̇ij(t

′)dt′ (2-11)

EXAMPLE: Simple Extension

γij(t ≥ 0) =

2ε0 0 0
0 −ε0 0
0 0 −ε0

 (2-12)

τij(t) = G(t)

2ε0 0 0
0 −ε0 0
0 0 −ε0

 (2-13)

The extensional stress σE ≡ τ11 − τ22 = 3ε0G(t) (2-14)

Thus Young’s Modulus is three times the Shear Modulus

σE/ε0 ≡ E(t) = 3G(t) (2-15)
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EXAMPLE: STEADY SIMPLE SHEAR

For all past times the strain rate tensor is:

γ̇ij =

0 γ̇ 0
γ̇ 0 0
0 0 0

 (2-16)

Thus there are two equal nonzero components of the extra stress tensor:

τ12 = τ21 = σ = γ̇

∫ t

−∞
G(t− t′)dt′ (2-17)

Define s ≡ t− t′

then ds = −dt′, t′ = −∞→ s =∞, and t′ = t→ s = 0

σ = γ̇

∫ ∞

0

G(s)ds (2-18)

Since viscosity η ≡ σ/γ̇ and linear viscoelasticity corresponds to the low
shear rate (Newtonian) value of the viscosity

η0 =

∫ ∞

0

G(s)ds (2-19)

This is the first of many examples of the results of different linear vis-
coelastic experiments being related to one another. Equation (2-19) relates
the zero shear rate viscosity in steady shear to the shear relaxation modulus
measured in a step strain experiment.

Owing to the long relaxation times in polymers, it is often convenient to
use a logarithmic time scale, sd(ln s) = ds, s = 0→ ln s = −∞

η0 =

∫ ∞

−∞
sG(s)d(ln s)

Maxwell model has

G(t) = G0 exp(−t/λ) (2-22)

Thus tG(t) has a maximum at roughly t = λ.
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Step Strain Data on a Linear Polymer Melt
INTEGRATION TO OBTAIN VISCOSITY

η0 =

∫ ∞

−∞
sG(s)d ln s

Figure 4: tG(t) for a high molecular weight nearly monodisperse polybuta-
diene with Mw = 940, 000. Solid curve is the Maxwell Model.
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Relaxation Time Spectrum

F (λ)dλ represents the mode strengths between λ and λ + dλ.

G(t) =

∫ ∞

0

F (λ) [exp(−t/λ)] dλ (2-28)

Defining H(λ) ≡ F (λ)λ, H(λ)d(ln λ) = F (λ)dλ, λ = 0⇒ ln λ = −∞

G(t) =

∫ ∞

−∞
H(λ) [exp(−t/λ)] d(ln λ) (2-29)

Equations (2-28) and (2-29) are continuous versions of the Generalized
Maxwell Model. Many methods for calculating H(λ) from experimental data
are found in J. D. Ferry, Viscoelastic Properties of Polymers, Wiley (1980).

Relaxation spectra are discussed extensively in the literature, despite the
fact that calculation of H(λ)or F (λ) is

MATHEMATICALLY ILL-POSED.

Many H(λ) describe the same G(t).
Furthermore, molecular theories of viscoelasticity predict G(t) directly,

so the relaxation spectrum is nearly obsolete.
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Shear Relaxation Modulus of Polymer Gels
CROSSLINKED ELASTOMERS (p. 1)

Crosslinked polymers are viscoelastic solids. They exhibit time-dependent
stress relaxation, but do not relax to a zero stress state.

Figure 5: Stress Relaxation of a Crosslinked Gel

The (short time) glassy modulus is

Gg
∼=

kT

b3
kT per monomer

k is the Boltzmann’s constant
T is the absolute temperature
b is a length scale that is roughly the size of a monomer
Typical Gg for polymers are 109-1010dynes/cm2, which corresponds to

b ∼= 3Å.
A general relation links length scale l and modulus scale G

G ∼=
kT

P l3
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Shear Relaxation Modulus of Polymer Gels
CROSSLINKED ELASTOMERS (p. 2)

Figure 6: Stress Relaxation of a Crosslinked Gel

The (long time) gel modulus is

Ge = νkT =
ρRT

Mx

kT per network strand

ν = ρNA/Mx is the number density of network strands
R ≡ NAk, with NA Avogadro’s number
ρ is the polymer density
Mx is the molecular weight of a network strand.
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Shear Relaxation Modulus of Polymer Melts
CHAIN ENTANGLEMENT

Long linear polymers have universal linear viscoelastic response that de-
pends on their chain length and chain length distribution, independent of
the chemical details.

Figure 7: Stress Relaxation Modulus of Polymers

Curve A is a monodisperse unentangled polymer (M < MC).
Relaxation is rapid, with no sign of a rubbery plateau.
Curve B is a monodisperse entangled polymer (M > MC).
At short times the relaxation is identical to the short chain, but terminal

relaxation is delayed by the rubbery plateau.
The plateau modulus is

G0
N =

ρRT

Me

kTper entanglement strand (2-20)

where Me is the molecular weight of an entanglement strand.
Curve C is a polydisperse entangled polymer (Mw > MC).
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Zero Shear Rate Viscosity of Linear Polymers
UNIVERSAL BEHAVIOR

η0 ∼
{

Mw Mw < MC

M3.4
w Mw > MC

INDEPENDENT OF MONOMER CHEMISTRY!

Figure 8: Viscosity - Molecular Weight Relation for various Linear Polymers
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Relaxation Time Distribution
THE GENERALIZED MAXWELL MODEL

The (single mode) Maxwell model has

G(t) = G0 exp(−t/λ) (2-22)

Multiple relaxation times are described by the Generalized Maxwell Model

G(t) =
N∑

i=1

Gi exp(−t/λi) (2-25)

Figure 9: Generalized Maxwell Model

By using a sufficient number of modes, one can empirically describe any
viscoelastic liquid with the Generalized Maxwell Model.
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Creep and Creep Recovery
SHEAR COMPLIANCE

Apply a constant stress σ for all times t > 0.

Shear Creep Compliance J(t) ≡ γ(t)/σ units cm2/dyne (2-31)

Linear viscoelasticity ⇒ J(t) is independent of σ

Figure 10: Creep Compliance of a Polymer Melt.

The long-time creep behavior of a viscoelastic liquid is linear in time.

J(t) = J0
S + t/η0 (2-32)

J0
S is the steady state compliance, and provides a measure of the terminal

(long-time) elastic energy in the system.
Boltzmann Superposition makes

J0
S =

1

η2
0

∫ ∞

0

G(s)sds =

∫∞
0

G(s)sds[∫∞
0

G(s)ds
]2 (2-33)

Once again, a logarithmic time scale is often convenient.
sd ln s = ds, s = 0⇒ ln s = −∞

J0
S =

1

η2
0

∫ ∞

−∞
s2G(s)d ln s
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Step Strain Data on a Linear Polymer Melt
INTEGRATION TO OBTAIN THE
STEADY STATE COMPLIANCE

J0
S =

1

η2
0

∫ ∞

−∞
s2G(s)d ln s

Figure 11: t2G(t) for a High Molecular Weight Nearly Monodisperse Polybu-
tadiene with Mw = 940, 000. Solid Curve is the Maxwell Model.
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Relations between Creep Compliance and
Relaxation Modulus

Each measurable viscoelastic function (G(t), J(t), etc.) contains all in-
formation about the linear viscoelastic response of a material.

EXAMPLE: VISCOSITY AND STEADY STATE
COMPLIANCE

Long-time creep

J(t) = J0
S + t/η0 (2-32)

determines both η0 and J0
S.

They can also be determined from the shear relaxation modulus

η0 =

∫ ∞

0

G(s)ds (2-19)

J0
S =

1

η2
0

∫ ∞

0

G(s)sds (2-33)

RELATIONS BETWEEN G(t) AND J(t)

The same information is contained in both functions, so there must be a
general relationship. One form involves Laplace Transforms∫ ∞

0

J(t) exp(−ts)dt =
1

s2
∫∞

0
G(t) exp(−ts)dt

The other forms are convolution integrals∫ t

0

G(λ)J(t− λ)dλ = t

∫ t

0

J(λ)G(t− λ)dλ = t

This implies a simple inequality

J(t)G(t) ≤ 1
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Creep and Creep Recovery
RECOVERABLE COMPLIANCE OF A

VISCOELASTIC LIQUID

After reaching steady state in creep, we remove the stress and measure
the elastic recoil strain γr(t)

RECOVERABLE COMPLIANCE R(t) ≡ γr(t)/σ (2-39)

Boltmann Superposition makes R(t) = J(t)− t/η0 (2-40)

The long-time limit of the recoverable strain is thus the steady state
compliance

lim
t→∞

[R(t)] = J0
s (2-41)

The terminal (longest) relaxation time is

λ1
∼= η0J

0
s (2-35)

Figure 12: Creep and Creep Recovery for a Viscoelastic Liquid. Stress σ0 is
applied at t = 0, and removed at t = t2. Note that J0

e = J0
s .
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Creep and Creep Recovery
RECOVERABLE COMPLIANCE OF A

VISCOELASTIC SOLID

A viscoelastic solid has infinite viscosity, so

R(t) = J(t)

and the long-time limits of each are the equilibrium compliance J0
e .

R(∞) = J(∞) = J0
e

Figure 13: Creep and Creep Recovery for a Viscoelastic Solid. Stress σ0 is
applied at t = 0, and removed at either t = t1 or t2.
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Creep and Creep Recovery
LOGARITHMIC PLOTS

Figure 14: Figures 2-6 and 2-7 in text have numerous mistakes. A is
monodisperse with M < MC , B is monodisperse with M � MC , and C is
polydisperse with Mw �MC .
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