Blow Molding

Fig. 7.40. Extrusion-blow moulding (after Crawford).

Fig. 15.14 A blow molding mold for a container with a handle. from J. D. Frankland, *Trans. Soc. Rheol.*, 19, 371 (1975).]

VENTS ARE < RUCIAL

LAST PLACES OF THE MOLD TO FILL.

Figure 4-2 Cold tube process, product forming steps. [1] Precut cool pipe length is heated. [2] Neck finish is die formed. [3] Bottom end is closed. [4] Preform in stretch blow mold. [5] Forming mandrel produces axial stretching. [6] Blow air produces hoop stretching.

Figure 4-6 Two-stage reheat blow molding.

Blow Molding INJECTION-BLOW MOLDING

No pinch-off scrap Excellent thickness control Fewer surface defects

Blow Molding BLOW MOLDING DEFECTS

Axial thickness variations in parison

Surface defects: Mottle, Extrusion Die Lines

Fig. 15.15 Parison pleating, illustrating initially smooth partison becoming pleated with increased length. [Reprinted with permission from J. S. Schaul, M. J. Hannon and K. F. Wissbrun, *Trans. Soc. Rheol.*, 19, 351 (1975).]

Pinch-off scars, trimming

Operation	Advantages	Disadvantages Large amount of scrap; uses recycled scrap; limitations on wall thickness; trimming facilities needed	
Extrusion blow molding	High production rates; low tooling costs; wide selection of equipment		
Injection blow molding	No scrap; excellent thickness control; accurate neck finishes; outstanding surfaces, can produce low volume of products	High tooling costs; larger objects not possible	
Stretch blow	Economical; improved properties; accurate control of wall thicknesses; reduced weights allowed		

TARLE 0.3	Advantages and	Dicadvantages	of Blow Molding	Onerations
INDLE 7-3	Auvantages anu	Disauvantages	or piow-mounts	Operations

Figure 16-10 Sagging behavior of parison.

Stress due to parison's own weight:

$$\sigma_e = \frac{lA\rho g}{A} = l\rho g$$

Strain Rate $\dot{\varepsilon} = \frac{\sigma_e}{\eta_e} = \frac{\sigma_e}{3\eta_0} = \frac{l\rho g}{3\eta_0}$ Sag Velocity $v = \dot{\varepsilon}l = \frac{l^2 \rho g}{3\eta_0}$

To minimize sag:

1. Use short parison

2. Use polymer with a high zero-shear viscosity

Blow Molding NECK RING BLOW MOLDING PROCESS

Figure 1-9 Neck ring process. (a) Body section open, neck section closed, neck section retracted. (b) Neck section extended to mate with parison nozzle [plastic fills neck section], [c] Neck section retracted with parison tube attached. (d) Body section closed, making pinch-off [parison blown to body sidewalls]. (e) Body molds open, neck molds open, bottle about to be ejected. Courtesy of John Wiley and Sons.

Blow Molding I-BLOW MOL -BLO OF STRE ィママ Н 1 ιF T ٦ _

Figure 4-12 Two-stuge PET injection stretch blow molding machine. First sta-tion: Condition the preform. Second station: Condition the preform. Third sta-tion: Stretch blow PET bottles. Fourth station: Eject bottles. Courtesy of Krupp Corpoplast, West Germany.

Blow Molding BRANCHED VS. LINEAR RHEOLOGY

FIGURE 46. Alteration of viscosity-shear rate behavior due to the presence of long branches.

Branched vs. Linear rheology Branched have higher η_0

Linear $\eta_0 \sim M_W^{3.4}$

Branched $\eta_0 \sim M_W^{5-6}$

Branched are more shear-thinning

at high
$$\dot{\gamma} \qquad \eta \sim \dot{\gamma}^{-(1-n)}$$

 $n \cong 0.3$ for linear $n \cong 0.2$ for branched

Branched polymers are better blow molding resins