

Figure 1: Definitions of Symbols

Barrel Diameter D = 2RScrew Helix Angle θ Screw Pitch B + bScrew Rotation Speed N (RPM)

Channel Depth $H = R - R_i$ Screw Clearance $h = R - R_o$ Channel Width WFlight Width w

DRAG FLOW — the Couette flow between the rotating screw and the stationary barrel

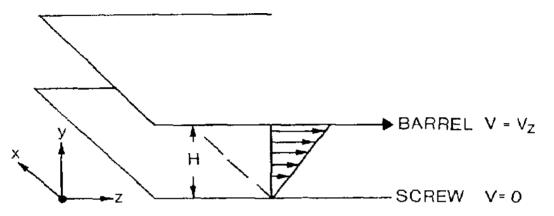


Figure 2: Drag Flow Mechanism

Down Channel Velocity Component $V_z = V \cos \theta$ (4.1)

Volumetric Flow Rate from Drag $Q_D = W \int_0^H v(y) dy$ (4.2) For a Newtonian fluid, the velocity profile is linear:

$$v(y) = V_z \frac{y}{H}$$

$$Q_D = \frac{WV_z}{H} \int_0^H y dy = \frac{WV_z}{H} \frac{H^2}{2} = \frac{WV_zH}{2}$$
(4.3)

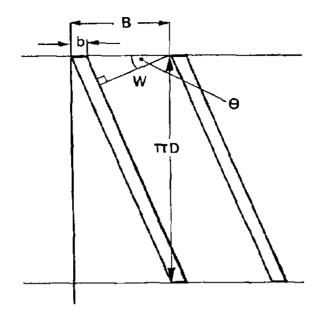


Figure 3: Unrolled Single Turn of the Extruder Screw Helix

The tangential velocity at the barrel surface is determined from the rotation speed of the screw:

$$V = \pi D N \tag{4.4}$$

Down Channel Velocity Component $V_z = \pi DN \cos\theta$ (4.5)

$$Q_D = \frac{\pi}{2} W H D N \cos \theta \equiv \alpha N \tag{4.6}$$

The drag flow effectively pumps the polymer through the extruder.

 Q_D is proportional to the rotation speed N.

Proportionality constant α only depends on screw geometry.

PRESSURE FLOW — the Poiseuille flow suppressing flow through the extruder

Extruders usually have some FLOW RESTRICTION (like a die) at the end of the extruder. This creates a pressure gradient along the screw that works against the flow through the screw:

$$Q_P = -\frac{WH^3}{12\mu}\frac{\Delta P}{L} \equiv -\frac{\beta}{\mu}\Delta P \tag{4.7}$$

Again, the proportionality constant β only depends on screw geometry.

The NET VOLUMETRIC FLOW RATE is the sum:

$$Q = Q_D + Q_P \tag{4.8}$$

Example 1: OPEN DISCHARGE No flow restriction at the end of the extruder (remove die)

$$Q_P = 0$$
 and $Q = Q_D$

Example 2: CLOSED DISCHARGE No flow out of the extruder (plug die)

Q = 0 , $Q_P = Q_D$ and $\Delta P = \alpha \mu N / \beta$

In general the die restricts the flow somewhat, but not completely. Combining equations 4.6, 4.7, and 4.8, we get the EXTRUDER CHARACTERISTIC:

$$Q = \alpha N - \frac{\beta}{\mu} \Delta P \tag{4.13}$$

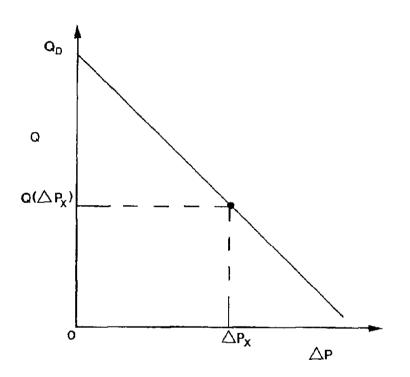


Figure 4: The Extruder Characteristic for a Newtonian Fluid is a linear relation between Q and ΔP .

```
y-axis intercept \Rightarrow OPEN DISCHARGE (\Delta P = 0)
x-axis intercept \Rightarrow CLOSED DISCHARGE (Q = 0)
More Flow Restriction \Rightarrow
Larger Pressure (larger \Delta P) \Rightarrow
Smaller Throughput (lower Q)
```

There is a simple relation between pressure drop and volumetric flow rate in the die.

$$Q = K \frac{\Delta P}{\mu} \tag{4.21}$$

 $K = \frac{\pi R^4}{8L}$ Circular Die: Hagen-Poiseuille Law $K = \frac{WH^3}{12L}$ Slit Die: $\mathbf{Q}_{\mathbf{D}}$ DIE CHARACTERISTIC Q OPERATING POINT $(\Delta P_x, Q_x)$ EXTRUDER CHARACTERISTIC 0 ۵ ΔP

Figure 5: The Operating Point is the Intersection of the Extruder Characteristic and the Die Characteristic.

Single-Screw Extrusion EFFECT OF PROCESS VARIABLES

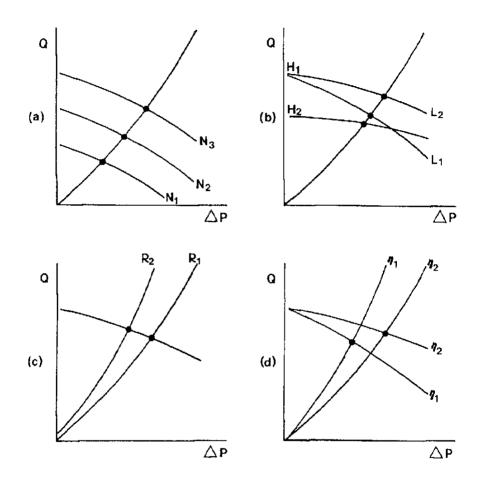


Figure 6: (a) Effect of Screw Speed $(N_3 > N_2 > N_1)$. (b) Effect of Screw Channel Depth $(H_1 > H_2)$ and Metering Section Length $(L_2 > L_1)$. (c) Effect of Die Radius $(R_2 > R_1)$. (d) Effect of Viscosity $(\eta_2 > \eta_1)$.