

Extrusion

Unwind helical screw into a flat cartesian coordinate system.

Figure 2: The extruder has the screw turning in a fixed barrel.

Choose coordinate system that moves with the screw. Then effectively have the barrel moving with velocity \vec{v}_{b}.

$$
\vec{v}_{b}=-v_{b} \sin \theta \vec{i}+v_{b} \cos \theta \vec{k} \quad v_{b}=\left|\vec{v}_{b}\right|
$$

Time independent

$$
v_{y}=0 \quad v_{x}=v_{x}(x, y) \quad v_{z}=v_{z}(x, y)
$$

Continuity

$$
\frac{d v_{x}}{d x}=0 \quad \Rightarrow \quad v_{x}=v_{x}(y)
$$

N.-S.:

$$
\begin{aligned}
& \frac{d P}{d x}=\mu \frac{d^{2} v_{x}}{d y^{2}} \quad \frac{d P}{d y}=0 \\
& \frac{d P}{d z}=\mu\left(\frac{d^{2} v_{z}}{d x^{2}}+\frac{d^{2} v_{z}}{d y^{2}}\right)
\end{aligned}
$$

B.C. at $y=0, \quad \vec{v}=0, \quad v_{x}=v_{z}=0$
at $y=H, \vec{v}=\vec{v}_{b}, v_{x}=-v_{b} \sin \theta, v_{z}=v_{b} \cos \theta$

Extrusion

$$
\begin{aligned}
& P=P(x, z) \\
& \frac{d P}{d x}=\mu \frac{d^{2} v_{x}}{d y^{2}} \\
& f(x, z)=h(y) \quad \therefore \text { (both constant) }
\end{aligned}
$$

There is no obvious B.C. for pressure. For now we just keep $d P / d x$ and remember that it is constant!

$$
\frac{d^{2} v_{x}}{d y^{2}}=\frac{1}{\mu} \frac{d P}{d x} \quad \text { a constant }
$$

Integrate twice: $\quad v_{x}=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+C_{1} y+C_{2}$

$$
\begin{gathered}
v_{x}(0)=0 \quad \Rightarrow \quad C_{2}=0 \\
v_{x}(H)=-v_{b} \sin \theta=\frac{1}{2 \mu} \frac{d P}{d x} H^{2}+C_{1} H \\
C_{1}=-\frac{v_{b}}{H} \sin \theta-\frac{H}{2 \mu} \frac{d P}{d x}
\end{gathered}
$$

Extrusion

$$
v_{x}=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}-\left(\frac{v_{b}}{H} \sin \theta+\frac{H}{2_{\mu}} \frac{d P}{d x}\right) y
$$

The vertical flights prevent any net flow in the x -direction.

Net flow in the x-direction is zero

$$
\begin{gathered}
\int_{0}^{H} v_{x} d y=0 \\
{\left[\frac{1}{6 \mu} \frac{d P}{d x} y^{3}-\left(\frac{v_{b}}{H} \sin \theta+\frac{H}{2 \mu} \frac{d P}{d x}\right) \frac{y^{2}}{2}\right]_{0}^{H}=0} \\
\frac{1}{6 \mu} \frac{d P}{d x} H^{3}-\frac{v_{b} H}{2} \sin \theta-\frac{H^{3}}{4 \mu} \frac{d P}{d x}=0 \\
\frac{H^{3}}{12 \mu} \frac{d P}{d x}=-\frac{v_{b} H}{2} \sin \theta \\
\frac{d P}{d x}=-\frac{6 \mu}{H^{2}} v_{b} \sin \theta
\end{gathered}
$$

Put into v_{x} :

$$
\begin{gathered}
v_{x}=-\frac{3 y^{2}}{H^{2}} v_{b} \sin \theta-\frac{y}{H} v_{b} \sin \theta+\frac{3 y}{H} v_{b} \sin \theta \\
v_{x}-v_{b} \sin \theta \frac{y}{H}\left[2-3 \frac{y}{h}\right]
\end{gathered}
$$

$$
v_{x}=v_{b} \sin \theta \frac{y}{H}\left[2-3 \frac{y}{h}\right]
$$

Figure 3: The extruder has the screw turning in a fixed barrel.
v_{x} is a universal function of $v_{b} \sin \theta$ and y / H.
independent of viscosity!
at $\quad y=\frac{2}{3} H, \quad v_{x}=0 \quad$ Observed in experiment

Extrusion

$$
\begin{gathered}
\frac{d P}{d z}=\mu\left(\frac{d^{2} v_{z}}{d x^{2}}+\frac{d^{2} v_{z}}{d y^{2}}\right) \quad v_{z}=v_{z}(x, y) \\
f(z)=h(x, y) \quad \therefore \text { both constant }
\end{gathered}
$$

No B.C. for pressure, but $d P / d z$ is constant.

$$
\frac{d^{2} v_{z}}{d x^{2}}+\frac{d^{2} v_{z}}{d y^{2}}=\frac{1}{\mu} \frac{d P}{d z} \quad \text { (a constant) }
$$

$$
\begin{aligned}
& \text { B.C. } v_{z}(x, 0)=0 \quad v_{z}(x, H)=v_{b} \cos \theta \\
& v_{z}(0, y)=v_{z}(w, y)=0
\end{aligned}
$$

Solution is more complicated: $\quad v_{b z} \equiv v_{b} \cos \theta$

$$
\begin{aligned}
\frac{v_{z}}{v_{b z}}= & \frac{4}{\pi} \sum_{i=1,3,5}^{\infty} \frac{\sin h(i \pi y / W)}{i \sin h(i \pi H / W)} \sin \left(\frac{i \pi x}{W}\right) \\
& -\left(\frac{1}{2 \mu} \frac{d P}{d z} \frac{H^{2}}{v_{b z}}\right)\left[\left(\frac{y}{H}\right)^{2}-\frac{y}{H}+\frac{8}{\pi^{3}} \sum_{i=1,3,5}^{\infty} \frac{\cos h\left[i \pi \frac{W}{H}\left(\frac{x}{w}-\frac{1}{2}\right)\right]}{i^{3} \cos h\left(\frac{i \pi W}{2 H}\right)} \sin \left(\frac{i \pi y}{H}\right)\right]
\end{aligned}
$$

i.e. $\quad \frac{v_{z}}{v_{b z}}=$ Drag flow
-Pressure-driven backflow

Drag flow term is a Couette flow (it comes from the moving boundary)

Pressure-driven backflow is a Poiseuille Flow

The origin of the pressure is due to some flow restriction at the outlet of the extruder (such as a die).

Extrusion

Volumetric flow rate

$$
Q=n \int_{0}^{H} \int_{0}^{W} v_{z} d x d y
$$

$n=$ number of parallel channels

$$
\begin{gathered}
Q=Q_{D}+Q_{P} \\
Q_{D}=n v_{b} \cos \theta W H F_{D}(W / h) \\
Q_{P}=-n \frac{W H^{3}}{\mu}\left(\frac{d P}{d z}\right) F_{p}(W / H) \\
F_{D}=\frac{8 W}{\pi^{3} H} \sum_{i o d d} \frac{1}{i^{3}} \tanh \left(\frac{i \pi H}{2 W}\right) \\
F_{P}=\frac{1}{12}-\frac{16 H}{\pi^{5} W} \sum_{i o d d} \frac{1}{i^{5}} \tanh \left(\frac{i \pi H}{2 W}\right) \\
\lim _{H / W \rightarrow 0} F_{D}=1 / 2 \quad \lim _{H / W \rightarrow 0} F_{P}=1 / 12
\end{gathered}
$$

In the shallow channel limit $(H / W \ll 1)$:

$$
-\frac{Q_{P}}{Q_{D}}=\frac{H^{2}}{6 \mu v_{b} \cos \theta} \frac{d P}{d z}
$$

In the middle of the channel $(x=W / 2)$ can neglect the flights of the screw.

$$
v_{z}=v_{b} \cos \theta\left[\frac{y}{h}+3 \frac{y}{H} \frac{Q_{P}}{Q_{D}}\left(1-\frac{y}{H}\right)\right]
$$

Extrusion

Velocity along the axial direction of the extruder is a vector sum of v_{x} and v_{z}.

$$
v_{a}=v_{x} \cos \theta+v_{z} \sin \theta
$$

3D MID-CANNEL VELrusion

Increase flow restriction at outlet means:
Less throughput
More mixing

DYE MAREXER MOVEMENT EXPERIMENTS

0.

b.

c.

Figure 6.9 Down channel velocity profile measured by Eccher and Valentinotti ${ }^{12}$ in the screw channel, measured at $0.5 \mathrm{~mm}, 3.5 \mathrm{~mm}$, and 7.5 mm from the fight. The minor changes in the velocity profile indicate the effect of the flights. (a) Pure drag flow. (b) Combined drag and pressure flow. (c) Co mbined drag and pressure flow with closed discharge. (Courtesy of Ref. 12)

PRESSURE DEtrusion

Pressure builds rapidly in compression section.

The taper in the compression section promotes mixing.

$$
\text { Compression Ratio } \quad h_{1} / h_{2} \quad 2 \leq \frac{h_{1}}{h_{2}} \leq 4
$$

$h_{1} / h_{2}=4 \quad$ used for low throughput compounding Example: PP and talc
$h_{1} / h_{2}=2 \quad$ used for high throughput pumping Example: LDPE film blowing

