Injection Molding BALANCING RUNNER SYSTEMS

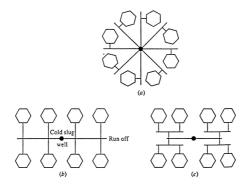


Figure 1: Two naturally balanced (symmetric) runner systems and one counter-example.

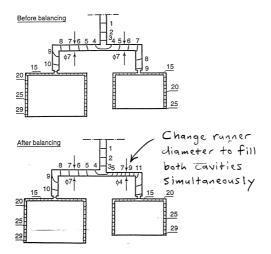


Figure 2: An artificially balanced runner system.

Injection Molding CONSEQUENCE OF IMBALANCED ŘUNNER SYSTEMS

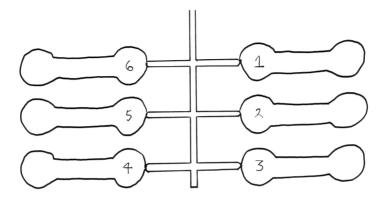


Figure 3: Need to **overpack** 1 and 6 to fill 3 and 4.

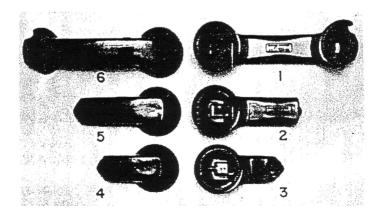
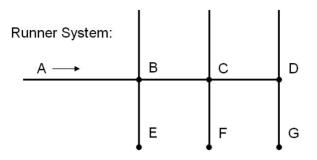


Figure 4: Short shots in a telephone-handle molding die.

Cartesian coordinates: x, y, z

$$\frac{dV_x}{dx} + \frac{dV_y}{dy} + \frac{dV_z}{dz} = 0$$

Cylindrical coordinates: r, θ, z


$$\frac{1}{r}\frac{d}{dr}(rv_r) + \frac{1}{r}\frac{dv_\theta}{d\theta} + \frac{dv_z}{dz} = 0$$

Spherical coordinates: r, θ, ϕ

$$\frac{1}{r^2}\frac{d}{dr}(r^2v_r) + \frac{1}{r\sin\theta}\frac{d}{d\theta}(v_\theta\sin\theta) + \frac{1}{r\sin\theta}\frac{dv_\phi}{d\phi} = 0$$

All are simply $\vec{\nabla} \cdot \vec{v} = 0$

Injection Molding

Example: use Hagen-Poiseuille Law to balance the runners

Hagen-Poiseuille Law: $\Delta P = \frac{8\mu LQ}{\pi R^4}$

Suppose: $R_{AB} = R_{BC} = R_{CD} = R_{DG} \equiv R$

What size do we make R_{BE} and R_{CF} to balance the pressures at E, F and G?

Flow is split 6 ways:
$$Q_{AB} \equiv Q$$

$$Q_{BC} = \frac{2}{3}Q$$
$$Q_{CD} = \frac{1}{3}Q$$
$$Q_{BE} = Q_{CF} = Q_{DG} = \frac{1}{6}Q$$

All lengths are equal, define $K \equiv 8\mu L/\pi$

Injection Molding

Pressure drops are additive:

$$\Delta P_{BG} = \frac{KQ_{BC}}{R_{BC}^4} + \frac{KQ_{CD}}{R_{CD}^4} + \frac{KQ_{DG}}{R_{DG}^4}$$
$$= \frac{2KQ}{3R^4} + \frac{KQ}{3R^4} + \frac{KQ}{6R^4}$$
$$= \frac{7KQ}{6R^4}$$

$$\Delta P_{BF} = \frac{KQ_{BC}}{R_{BC}^4} + \frac{KQ_{CF}}{R_{CF}^4}$$
$$= \frac{2}{3}\frac{KQ}{R^4} + \frac{KQ}{6R_{CF}^4}$$

First Result: $\Delta P_{BG} = \Delta P_{BF} \Rightarrow \frac{1}{6R_{CF}^4} = \frac{1}{2R^4}$

$$R_{CF} = \frac{R}{3^{1/4}} = 0.76R$$
$$\Delta P_{BE} = \frac{KQ}{6R_{BE}^4}$$

Second Result: $\Delta P_{BE} = \Delta P_{BG} \Rightarrow \frac{1}{6R_{BE}^4} = \frac{1}{6R_{BE}^4}$

$$\frac{1}{6R_{BE}^4} = \frac{7}{6R^4}$$

$$R_{BE} = \frac{R}{7^{1/4}} = 0.61R$$

Injection Molding EXTREME EXAMPLE OF RUNNER BALANCING

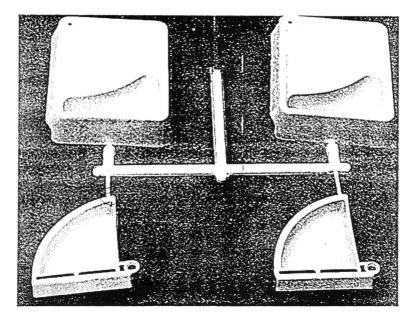


Figure 5: Family mold (pair of dishwasher detergent holding set).

Injection Molding CONVENTIONAL INJECTION MOLDING

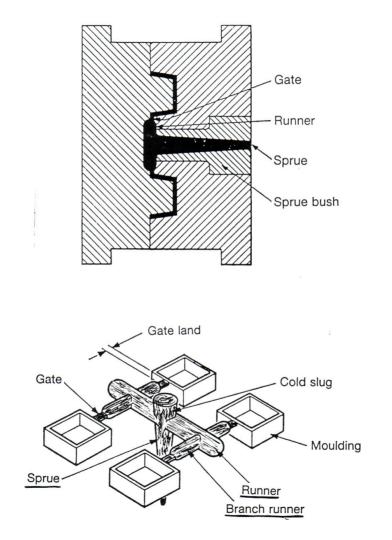


Figure 6: Discard or regrind.

Injection Molding INJECTION MOLDING DEFECTS

Weld lines

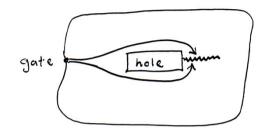


Figure 7: Cold flow fronts recombine to make a visible line that can be mechanically weak.

Voids, Sink Marks, Shrinkage

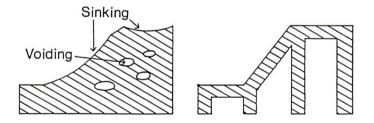
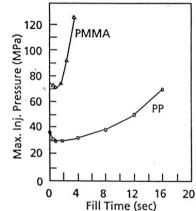
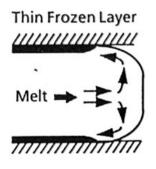


Figure 8: Use of ribs instead of a solid section. Solid section (left) and thin section (right). 10% shrink can be expected.

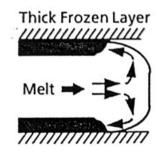
Thick sections cool after gate freezes.


Sticking - Injection pressure too high (overpack).

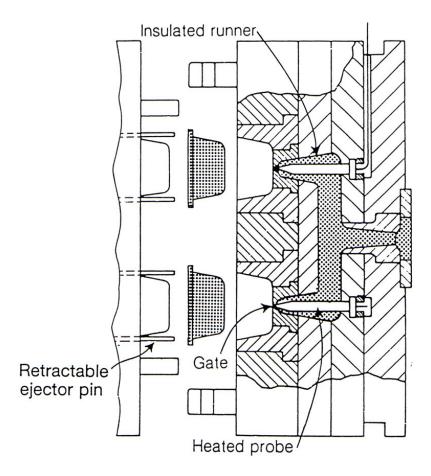
Warping - Insufficient cooling before ejection.


Burning - Extrusion temperature too high. Shear heating.

Injection Molding MATERIAL AND INJECTION PRESSURE


- Different materials require different injection pressures
- Different materials exhibit a wide range of viscosity levels

FROZEN LAYER IN FOUNTAIN FLOW



Fast Fill Time Hot Mold Temp. High Melt Temp.

Slow Fill Time Cold Mold Temp. Low Melt Temp.

Injection Molding HOT-RUNNER SYSTEMS

More expensive mold Potential degradation problems Eliminates regrind Automatic detachment