
Molecular Structure Effects
MOLECULAR RELAXATION PROCESSES

Figure 1: Molecular Relaxation: (a) The shortest mode is an elementary
bond flip (conformation change). (b) Many bond flips allow the entire chain
to return to a random configuration and hence relax stress.

The equilibrium state of the chain is a random walk, with mean square
end-to-end distance 〈R2〉.

〈R2〉 = Nl2 (10-1)

N is the number of monomers.
l is the monomer size.
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Molecular Structure Effects
MOLECULAR RELAXATION PROCESSES

MONODISPERSE LINEAR CHAINS

If unentangled, the chains relax to their random walk statistics by free
Rouse Motion.

λ ∼ M2

G(λ) ∼ 1

M

η0
∼= λG(λ) ∼ M

J0
e ∼

1

G(λ)
∼ M

If entangled, the chains relax more slowly to their random walk statistics
because the Rouse motion is confined to occur inside the tube of surrounding
chains.

λ ∼ M3.4

G(λ) ∼= G0
N (independent of M)

η0
∼= λG(λ) ∼ M3.4

J0
e ∼

1

G0
N

(independent of M)
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Molecular Structure Effects
MOLECULAR WEIGHT DISTRIBUTION

Figure 2: Molecular Weight Distribution with Relevant Averages.
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Molecular Structure Effects
ZERO SHEAR VISCOSITY

Figure 3: Viscosity-Molecular Weight Relation.

Zero shear viscosity is simply a function of weight-average molecular
weight.

η0 = K1Mw for Mw < Mc (unentangled) (10-2a)

η0 = K2M
3.4
w for Mw > Mc (entangled) (10-2b)
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Molecular Structure Effects
STEADY STATE COMPLIANCE

MONODISPERSE CASE

Figure 4: Steady State Compliance of Monodisperse Polymers.

J0
s =

0.4M

ρRT
for Mw < M ′

c (unentangled) (2-101)

J0
s =

0.4M ′
c

ρRT
for Mw > M ′

c (entangled) (10-3)
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Molecular Structure Effects
STEADY STATE COMPLIANCE

POLYDISPERSE CASE

Figure 5: Steady State Compliance of Binary Blends of Polydisperse Com-
mercial Polydimethylsiloxanes. (Mw)A = 58500 and (Mw)B = 596000.

Steady state compliance is a strong function of polydispersity.

J0
s =

0.4M ′
c

ρRT
f(MWD) (10-4)

Rouse Model f =
MzMz+1

M2
w

(10-5)

Reptation Model f =
Mz+4Mz+3Mz+2

Mz+1MzMw

Empirical f =

(
Mz

Mw

)a

with 2 < a < 3.7 (10-6)
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Molecular Structure Effects
STEADY SHEAR VISCOSITY and DIE

SWELL

Figure 6: Apparent Viscosity in Steady Shear for Polystyrene. Filled symbols
have Mw = 260000 with Mw/Mn = 2.4. Open symbols have Mw = 160000
with Mw/Mn < 1.1.

Figure 7: Effect of Molecular Weight and Distribution on the Die Swell of
Polystyrene.

Polydispersity greatly increases the longest relaxation time and thus in-
creases the stored elastic energy in flow.

MWD ↑=⇒ λ ↑=⇒ J0
s =

λ

η0

↑=⇒ More Die Swell
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Molecular Structure Effects
LONG-CHAIN BRANCHING

Figure 8: Simplest Branched Polymer is a Star.

Figure 9: Oscillatory Shear for Linear (filled symbols, Mw = 435000) and
3-Arm Star (open symbols, Mw = 127000) Polybutadienes at 25◦C.

Branched polymers relax by arm-retraction because reptation is not
allowed by the branch point.
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Molecular Structure Effects
LONG-CHAIN BRANCHING

Figure 10: Viscosity of Linear (circles), 3-Arm Star (squares) and 4-Arm Star
(triangles) Polybutadienes at 107◦C.

Figure 11: Steady State Compliance of Entangled Linear (circles), 4-Arm
Star (squares) and 6-Arm Star (triangles) Polystyrenes.

η0 ∼ exp

(
νMb

Me

)
J0

s =
0.6Mb

cRT

Mb is the molecular weight of the star arm.
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Molecular Structure Effects
LONG-CHAIN BRANCHING STEADY

SHEAR VISCOSITY

Figure 12: Apparent Viscosity of Randomly Branched Polymers Compared
to Linear Polymers.

Branching makes for more chain ends per unit volume. Thus branched
chains have more arm retraction relaxations induced by a strong flow, and
exhibit stronger shear thinning than linear polymers.

Branching provides a means to tailor the rheology to certain needs.
EXAMPLE: Blow Molding
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Molecular Structure Effects
CHARACTERIZATION OF LONG-CHAIN

BRANCHING

Since branching has such a profound effect on rheology, it is crucial to
characterize the extent of branching in the polymer.

DILUTE SOLUTION CHARACTERIZATION

The hydrodynamic volume of a branched polymer is somewhat smaller
than a linear polymer of the same molecular weight.

Intrinsic viscosity [η] is the initial slope of viscosity vs. concentration:

η = ηs

(
1 + [η]c + KH ([η]c)2 · ··

)
KH is the Huggins coefficient.

Intrinsic Viscosity

(
[η]star

[η]lin

)
M

=

√
3f − 2

f
< 1

f is the number of arms in the star.
Thus branching can be determined by a combination of light scattering

(determines Mw) and intrinsic viscosity. This is usually done with light scat-
tering and viscosity detectors coupled with size exclusion chromatography.

Note that the effect of branching on dilute solution viscosity is sub-
tle. Conversely, the effect of branching on melt rheology is striking. Since
melt rheology directly influences processing, one is far better off measuring
branching effects with melt rheology.
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Molecular Structure Effects
RANDOMLY BRANCHED POLYMERS

Random branching always makes an extremely broad molecular weight
distribution.

The Rouse model of randomly branched polymers predicts a weak depen-
dence of viscosity on molecular weight.

η0 ∼ M0.75
w

The steady state compliance is a somewhat stronger function due to poly-
dispersity effects.

J0
s ∼ M1.5

w

In general the molecular weight dependence of viscosity depends on the
number of monomers between branch points N .

η0 ∼ M s/γ
w

Figure 13: Dependence of the Exponent Describing the Viscosity - Molecular
Weight Relation for Randomly Branched Polymers on the Chain Length
between Branch Points.
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