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Figure 1: Molecular Relaxation: (a) The shortest mode is an elementary
bond flip (conformation change). (b) Many bond flips allow the entire chain
to return to a random configuration and hence relax stress.

The equilibrium state of the chain is a random walk, with mean square
end-to-end distance (R?).

(R?) = N2 (10-1)

N is the number of monomers.
[ is the monomer size.
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If unentangled, the chains relax to their random walk statistics by free
Rouse Motion.
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If entangled, the chains relax more slowly to their random walk statistics
because the Rouse motion is confined to occur inside the tube of surrounding
chains.
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Figure 2: Molecular Weight Distribution with Relevant Averages.
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Figure 3: Viscosity-Molecular Weight Relation.

Zero shear viscosity is simply a function of weight-average molecular

weight.

no = K1 M, for M,, < M, (unentangled) (10-2a)

no = KoM>* for M,, > M, (entangled) (10-2b)
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Figure 4: Steady State Compliance of Monodisperse Polymers.
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s = RT for M,, > M (entangled) (10-3)
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Figure 5: Steady State Compliance of Binary Blends of Polydisperse Com-

mercial Polydimethylsiloxanes. (M,,)4 = 58500 and (M,,)s = 596000.

Steady state compliance is a strong function of polydispersity.
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Figure 6: Apparent Viscosity in Steady Shear for Polystyrene. Filled symbols

have M,, = 260000 with M, /M, = 2.4. Open symbols have M, = 160000
with M, /M, < 1.1.
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Figure 7: Effect of Molecular Weight and Distribution on the Die Swell of
Polystyrene.

Polydispersity greatly increases the longest relaxation time and thus in-
creases the stored elastic energy in flow.
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Figure 8: Simplest Branched Polymer is a Star.
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Figure 9: Oscillatory Shear for Linear (filled symbols, M,, = 435000) and
3-Arm Star (open symbols, M, = 127000) Polybutadienes at 25°C.

Branched polymers relax by arm-retraction because reptation is not
allowed by the branch point.
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Figure 10: Viscosity of Linear (circles), 3-Arm Star (squares) and 4-Arm Star
(triangles) Polybutadienes at 107°C.
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Figure 11: Steady State Compliance of Entangled Linear (circles), 4-Arm
Star (squares) and 6-Arm Star (triangles) Polystyrenes.
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M, is the molecular weight of the star arm.
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Figure 12: Apparent Viscosity of Randomly Branched Polymers Compared
to Linear Polymers.

Branching makes for more chain ends per unit volume. Thus branched
chains have more arm retraction relaxations induced by a strong flow, and
exhibit stronger shear thinning than linear polymers.

Branching provides a means to tailor the rheology to certain needs.

EXAMPLE: Blow Molding
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Since branching has such a profound effect on rheology, it is crucial to
characterize the extent of branching in the polymer.

DILUTE SOLUTION CHARACTERIZATION

The hydrodynamic volume of a branched polymer is somewhat smaller
than a linear polymer of the same molecular weight.
Intrinsic viscosity [n] is the initial slope of viscosity vs. concentration:

=1, (1+ e+ Ku ([n)e)* - )
Ky is the Huggins coeflicient.

<1

[n]star . 3f -2
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f is the number of arms in the star.

Thus branching can be determined by a combination of light scattering
(determines M,,) and intrinsic viscosity. This is usually done with light scat-
tering and viscosity detectors coupled with size exclusion chromatography.

Note that the effect of branching on dilute solution viscosity is sub-
tle. Conversely, the effect of branching on melt rheology is striking. Since
melt rheology directly influences processing, one is far better off measuring
branching effects with melt rheology.

Intrinsic Viscosity (
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Random branching always makes an extremely broad molecular weight
distribution.

The Rouse model of randomly branched polymers predicts a weak depen-
dence of viscosity on molecular weight.
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The steady state compliance is a somewhat stronger function due to poly-
dispersity effects.
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In general the molecular weight dependence of viscosity depends on the
number of monomers between branch points N.

no ~ Mi)/v
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Figure 13: Dependence of the Exponent Describing the Viscosity - Molecular
Weight Relation for Randomly Branched Polymers on the Chain Length
between Branch Points.



