Molecular Structure Effects MOLECULAR RELAXATION PROCESSES

Figure 1: Molecular Relaxation: (a) The shortest mode is an elementary bond flip (conformation change). (b) Many bond flips allow the entire chain to return to a random configuration and hence relax stress.

The equilibrium state of the chain is a random walk, with mean square end-to-end distance $\langle R^2 \rangle$.

$$\langle R^2 \rangle = N l^2 \tag{10-1}$$

N is the number of monomers. l is the monomer size.

If **unentangled**, the chains relax to their random walk statistics by free Rouse Motion.

 $\lambda \sim M^2$ $G(\lambda) \sim \frac{1}{M}$ $\eta_0 \cong \lambda G(\lambda) \sim M$ $J_e^0 \sim \frac{1}{G(\lambda)} \sim M$

If **entangled**, the chains relax more slowly to their random walk statistics because the Rouse motion is confined to occur inside the tube of surrounding chains.

 $\lambda \sim M^{3.4}$

 $G(\lambda) \cong G_N^0$ (independent of M)

 $\eta_0 \cong \lambda G(\lambda) \sim M^{3.4}$

 $J_e^0 \sim \frac{1}{G_N^0} \quad (\text{independent of } M)$

Molecular Structure Effects MOLECULAR WEIGHT DISTRIBUTION

Figure 2: Molecular Weight Distribution with Relevant Averages.

$$M_n = \frac{\sum M_i n_i}{\sum n_i} = \frac{\int Mn(M)dM}{\int n(M)dM}$$
$$M_w = \frac{\sum M_i^2 n_i}{\sum M_i n_i} = \frac{\int M^2 n(M)dM}{\int Mn(M)dM}$$
$$M_z = \frac{\sum M_i^3 n_i}{\sum M_i^2 n_i} = \frac{\int M^3 n(M)dM}{\int M^2 n(M)dM}$$
$$M_{z+1} = \frac{\sum M_i^4 n_i}{\sum M_i^3 n_i} = \frac{\int M^4 n(M)dM}{\int M^3 n(M)dM}$$

Molecular Structure Effects ZERO SHEAR VISCOSITY

Figure 3: Viscosity-Molecular Weight Relation.

Zero shear viscosity is simply a function of weight-average molecular weight.

$$\eta_0 = K_1 M_w$$
 for $M_w < M_c$ (unentangled) (10-2a)

$$\eta_0 = K_2 M_w^{3.4} \qquad \text{for } M_w > M_c \text{ (entangled)} \tag{10-2b}$$

Molecular Structure Effects STEADY STATE COMPLIANCE MONODISPERSE CASE

Figure 4: Steady State Compliance of Monodisperse Polymers.

$$J_s^0 = \frac{0.4M}{\rho RT} \quad \text{for } M_w < M'_c \text{ (unentangled)} \quad (2-101)$$
$$J_s^0 = \frac{0.4M'_c}{\rho RT} \quad \text{for } M_w > M'_c \text{ (entangled)} \quad (10-3)$$

Molecular Structure Effects STEADY STATE COMPLIANCE POLYDISPERSE CASE

Figure 5: Steady State Compliance of Binary Blends of Polydisperse Commercial Polydimethylsiloxanes. $(M_w)_A = 58500$ and $(M_w)_B = 596000$.

Steady state compliance is a strong function of polydispersity.

$$J_s^0 = \frac{0.4M_c'}{\rho RT} f(MWD)$$
(10-4)

Rouse Model
$$f = \frac{M_z M_{z+1}}{M_w^2}$$
 (10-5)

Reptation Model
$$f = \frac{M_{z+4}M_{z+3}M_{z+2}}{M_{z+1}M_zM_w}$$

Empirical
$$f = \left(\frac{M_z}{M_w}\right)^a$$
 with $2 < a < 3.7$ (10-6)

Figure 6: Apparent Viscosity in Steady Shear for Polystyrene. Filled symbols have $M_w = 260000$ with $M_w/M_n = 2.4$. Open symbols have $M_w = 160000$ with $M_w/M_n < 1.1$.

Figure 7: Effect of Molecular Weight and Distribution on the Die Swell of Polystyrene.

Polydispersity greatly increases the longest relaxation time and thus increases the stored elastic energy in flow.

$$MWD \uparrow \Longrightarrow \lambda \uparrow \Longrightarrow J_s^0 = \frac{\lambda}{\eta_0} \uparrow \Longrightarrow$$
 More Die Swell

Molecular Structure Effects LONG-CHAIN BRANCHING

Figure 8: Simplest Branched Polymer is a Star.

Figure 9: Oscillatory Shear for Linear (filled symbols, $M_w = 435000$) and 3-Arm Star (open symbols, $M_w = 127000$) Polybutadienes at 25°C.

Branched polymers relax by **arm-retraction** because reptation is not allowed by the branch point.

Molecular Structure Effects LONG-CHAIN BRANCHING

Figure 10: Viscosity of Linear (circles), 3-Arm Star (squares) and 4-Arm Star (triangles) Polybutadienes at 107°C.

Figure 11: Steady State Compliance of Entangled Linear (circles), 4-Arm Star (squares) and 6-Arm Star (triangles) Polystyrenes.

$$\eta_0 \sim \exp\left(\frac{\nu M_b}{M_e}\right) \qquad J_s^0 = \frac{0.6M_b}{cRT}$$

 M_b is the molecular weight of the star arm.

Molecular Structure Effects LONG-CHAIN BRANCHING STEADY SHEAR VISCOSITY

Figure 12: Apparent Viscosity of Randomly Branched Polymers Compared to Linear Polymers.

Branching makes for **more chain ends** per unit volume. Thus branched chains have more arm retraction relaxations induced by a strong flow, and exhibit stronger shear thinning than linear polymers.

Branching provides a means to tailor the rheology to certain needs. EXAMPLE: Blow Molding

Molecular Structure Effects CHARACTERIZATION OF LONG-CHAIN BRANCHING

Since branching has such a profound effect on rheology, it is crucial to characterize the extent of branching in the polymer.

DILUTE SOLUTION CHARACTERIZATION

The hydrodynamic volume of a branched polymer is somewhat smaller than a linear polymer of the same molecular weight.

Intrinsic viscosity $[\eta]$ is the initial slope of viscosity vs. concentration:

$$\eta = \eta_s \left(1 + [\eta]c + K_H \left([\eta]c \right)^2 \cdots \right)$$

 K_H is the Huggins coefficient.

Intrinsic Viscosity
$$\left(\frac{[\eta]_{star}}{[\eta]_{lin}}\right)_M = \frac{\sqrt{3f-2}}{f} < 1$$

f is the number of arms in the star.

Thus branching can be determined by a combination of light scattering (determines M_w) and intrinsic viscosity. This is usually done with light scattering and viscosity detectors coupled with size exclusion chromatography.

Note that the effect of branching on dilute solution viscosity is **subtle**. Conversely, the effect of branching on melt rheology is **striking**. Since melt rheology directly influences processing, one is far better off measuring branching effects with melt rheology.

Molecular Structure Effects RANDOMLY BRANCHED POLYMERS

Random branching always makes an extremely broad molecular weight distribution.

The Rouse model of randomly branched polymers predicts a weak dependence of viscosity on molecular weight.

$$\eta_0 \sim M_w^{0.75}$$

The steady state compliance is a somewhat stronger function due to polydispersity effects.

$$J_s^0 \sim M_w^{1.5}$$

In general the molecular weight dependence of viscosity depends on the number of monomers between branch points N.

Figure 13: Dependence of the Exponent Describing the Viscosity - Molecular Weight Relation for Randomly Branched Polymers on the Chain Length between Branch Points.

$$\eta_0 \sim M_w^{s/\gamma}$$