
Rheometry
ROTATIONAL AND SLIDING SURFACE
RHEOMETERS (COUETTE DEVICES)

GAP LOADING vs. SURFACE LOADING

Must compare rheometer gap h to the shear wavelength λs.

Gap Loading Limit:
h

λs

� 1 (7-9)

In the gap loading limit, the shear wave propagates across the gap without
damping.

Shear Wavelength λs =
2π

ω
√

ρ/Gd cos(δ/2)
(7-10)

Surface Loading Limit:
h

λs

� 1

In the surface loading limit, the shear wave is completely damped before
it can travel across the gap. For polymer melts and concentrated solutions,
Gd ≡ σ0/γ0 is large and we always operate in the gap loading limit.

TWO CLASSES OF GAP LOADING INSTRUMENTS:
1. Impose Strain and Measure Stress
2. Impose Stress and Measure Strain

GEOMETRIES OF GAP LOADING INSTRUMENTS:
1. Cone and Plate
2. Parallel Disks
3. Eccentric Rotating Disks
4. Concentric Cylinder
5. Sliding Plate
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Rheometry
INSTRUMENT AND TRANSDUCER

COMPLIANCES

Figure 1: Simple Model for Instrument and Transducer Compliance: A
Spring (the instrument and transducer) in Series with a Maxwell Element
(the sample).

Actuator moves ∆x
Instrument plus transducer moves ∆y
Sample actually deforms by ∆x−∆y

∆x−∆y

∆x
< 1

and depends on time and material
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Rheometry
INSTRUMENT AND TRANSDUCER

COMPLIANCES

Series combination of Maxwell Model and Linear Spring.

Dashpot F = η
dx3

dt

Material Spring F = Gx2

Instrument/Transducer Spring F =
K

c
x1

K is a geometric constant with units of cm−3.
c is the instrument/transducer compliance (dyne cm)−1.

K

c
x1 = Gx2 = η

dx3

dt

x1 + x2 + x3 = x0 (a constant)

Solution is the same as the Maxwell model, but with time scale
(

cη
K

+ λ
)
,

where λ = η/G is the material’s relaxation time.
Solve to get apparent oscillatory shear moduli:

G′
a =

η
(

cη
K

+ λ
)
ω2(

cη
K

+ λ
)2

ω2 + 1
text has typo! (7-1)

G′′
a =

ηω(
cη
K

+ λ
)2

ω2 + 1
text has typo! (7-2)

For a known instrument/transducer compliance, one may calculate the
true moduli of the material from the apparent values.

G′ + iG′′ =
G′

a + iG′′
a

1− G′
a

k
− iG′′

a

k

(7-3)
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Rheometry
VISCOUS HEATING

All mechanical energy input to the sample must either be stored (and
hence recoverable) or dissipated as heat.

EXAMPLE: Steady-State Temperature Distribution in the Sliding Plate
Rheometer

T (x2) = T0 +
ηγ̇2h2

2k

[
x2

h
−

(x2

h

)2
]

(7-4)

k is the thermal conductivity
T0 is the temperature of the two plates.
The maximum temperature occurs at the midpoint between the plates

(x2 = h/2).

Tmax = T0 +
ηγ̇2h2

8k
(7-5)

Typical Numbers: η = 104 poise, γ̇ = 102 s−1, h = 0.1 cm,
k = 104 ergs/(s cm K)

ηγ̇2h2

8k
∼= 10K

Since viscosity changes with temperature, viscous heating can be very
important!

END AND EDGE EFFECTS

Rheometers with moving surfaces usually have free sample surfaces (in
contact with air, nitrogen or vacuum).

Cone and plate or parallel disk rheometers develop surface irregularities.
Concentric cylinder rheometers exhibit rod-climbing (the Weissenberg ef-

fect).
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Rheometry
CONE AND PLATE RHEOMETERS

Figure 2: The Cone and Plate Rheometer.

Advantages:
(1) Small sample size (roughly 1 gram)
(2) Uniform shear rate
(3) Easy to load and clean

Shear Rate γ̇ =
Ω

Θ0

(7-11)

Ω is the angular velocity (rad/s).
Θ0 is the cone angle.

Shear Stress σ =
3M

2πR3
(7-12)

M is the torque (dyne cm).
R is the radius (cm).

Normal Stress Difference N1 =
2F

πR2
(7-13)

F is the normal force (dynes).
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Rheometry
PARALLEL DISK RHEOMETERS

Figure 3: The Parallel Disk Rheometer.

Advantages:
(1) Small sample size (roughly 1 gram)
(2) Can change temperatures without reloading sample
(3) Easy to load and clean
Disadvantage: Shear rate is not uniform (OK for linear viscoelasticity,

but parallel disks are no good for nonlinear studies).

Shear Rate γ̇ =
Ωr

h

Ω is the angular velocity (rad/s).
h is the sample gap height (cm).
The shear rate in the parallel disk rheometer varies from zero at the

center to a maximum at the outer edge (r = R) γ̇max = ΩR/h.
Total torque on either disk in steady shear is

M =

∫ R

0

2πr2σdr =
πηΩR4

2h

for a Newtonian fluid (σ = ηγ̇).
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Rheometry
ECCENTRIC ROTATING DISKS

Figure 4: The Eccentric Rotating Disk Rheometer.

One disk is forced to rotate at fixed angular velocity Ω (rad/s). The
second disks rotates freely at the same angular frequency. ERD is a simple
way to do oscillatory shear with a steady rotation motor.

Advantages are identical to the parallel disk rheometer.
Disadvantage: Only performs oscillatory shear measurement.

η′ =
G′′

ω
=

Fxh

πΩdR2
(7-17)

G′ =
Fyh

πdR2
(7-18)

Fx is the force parallel to plates.
Fy is the force normal to plates.
h is the gap height, d is the eccentricity offset,
R is the disk radius.
The ERD device was originally developed by Bryce Maxwell in the 1960’s,

and is now virtually extinct.
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Rheometry
CONCENTRIC CYLINDER RHEOMETER

Figure 5: The Concentric Cylinder Rheometer (side view on left and top
view on right).

This rheometer was invented by Maurice Couette in 1890.
Advantages:
(1) For large radii the shear rate is nearly constant.
(2) Ideally suited for pourable liquids.
Disadvantages:
(1) No way to load high viscosity polymer melts.
(2) Large sample volume (typically 3− 30 grams).
Ω = angular velocity of the outer cylinder
vθ = vθ(r)
vr = vz = 0
steady state ∂~v/∂t = 0
constant pressure
negligible gravity

Navier-Stokes Equation η

[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)]
= 0
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Rheometry
CONCENTRIC CYLINDER RHEOMETER

Outer cylinder rotates at Ω, thus vθ = ΩR2 at r = R2

Inner cylinder is stationary, so vθ = 0 at r = R1[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)]
= 0

Integrate once:
∂

∂r
(rvθ) = Cr

Integrate again: rvθ = C1r
2 + C2

vθ = C1r +
C2

r

at r = R1, vθ = 0, C1 = −C2

R2
1
, so

vθ = C2

(
1

r
− r

R2
1

)
at r = R2, vθ = ΩR2 = C2

(
1

R2
− R2

R2
1

)
, so

C2 =
Ω(

1
R2

2
− 1

R2
1

)
vθ = Ω

(
1
r
− r

R2
1

)
(

1
R2

2
− 1

R2
1

)
Angular Velocity

vθ

r
= Ω

(
1
r2 − 1

R2
1

)
(

1
R2

2
− 1

R2
1

)
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Rheometry
CONCENTRIC CYLINDER RHEOMETER

Shear Rate γ̇ =

∣∣∣∣r∂(vθ/r)

∂r

∣∣∣∣ =
2Ω

r2
(

1
R2

1
− 1

R2
2

)
Shear Stress σ = ηγ̇ =

2ηΩ

r2
(

1
R2

1
− 1

R2
2

)

Torque on the inner cylinder T =

∫
A

R1σdA =

∫ L

0

∫ 2π

0

(R1σ) R1dθdz = 2πR2
1Lσ

Evaluate Shear Rate at r = R̄ =
R2 + R1

2

γ̇ =
2Ω

R̄2
(

1
R2

1
− 1

R2
2

) =
2ΩR2

1R
2
2

R̄2(R2
2 −R2

1)
=

2ΩR2
1R

2
2

R̄2(R2 + R1)(R2 −R1)
=

ΩR2
1R

2
2

R̄3(R2 −R1)

Small gap approximation:

R1
∼= R2

∼= R̄

γ̇ ∼=
ΩR̄

(R2 −R1)

When the gap is small, the shear rate is nearly uniform everywhere and
is essentially the same as simple shear between two flat plates.

γ̇ =
v

h
where v = ΩR̄ and h = R2 −R1
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Rheometry
SLIDING PLATE RHEOMETER

Figure 6: The Sliding Plate Rheometer.

Advantages:
(1) Shear rate is uniform
(2) Simple shear ⇒ Simple equations
Disadvantages:
(1) Difficult to load and clean
(2) Requires fairly large sample size (5− 10grams)

Shear Stress σ =
F

A
(7-19)

Shear Strain γ =
X

h
(7-20)

X is the displacement of the moving plate.
h is the gap height between plates.

Shear Rate γ̇ =
V

h
(7-21)

V = dX/dt is the velocity of the moving plate.
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Rheometry
SHEAR-SANDWICH RHEOMETER

Figure 7: The Shear-Sandwich Rheometer.

The shear sandwich is simply two sliding plate arrangements. The ad-
vantages and disadvantages are the same as the sliding plate rheometer. One
additional advantage of this design is the symmetry that keeps each slice
of sample in simple shear.

This geometry is popular for rheo-optical measurements because shear
rate is uniform and there are no curved surfaces.
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