### Nonlinear Viscoelasticity SINGLE STEP SHEAR STRAIN

$$G(t,\gamma) = \frac{\sigma(t,\gamma)}{\gamma}$$
(5-1)

FINITE RISE TIME



Figure 1: Comparison of Ideal Step Strain (1) with Real Strain Profile (2).

The real strain profile is approximated by a ramp.

$$\gamma(t) = \dot{\gamma}t \tag{5-2}$$

Rise Time 
$$\Delta t \equiv \frac{\gamma}{\dot{\gamma}}$$
 (5-3)

Rule of Ten  $t > 10\Delta t$  to be meaningful

$$G(t,\gamma) = \sum_{i} G_{i}(\gamma) \exp\left[\frac{-t}{\lambda_{i}(\gamma)}\right]$$
(5-7)

$$G(t,\gamma) = \sum_{i} h_i(\gamma) G_i \exp\left[\frac{-t}{\lambda_i(\gamma)}\right]$$
(5-8)



Figure 2: First Two Moduli  $(G_i)$  and Relaxation Times  $(\lambda_i)$  for the Nonlinear Stress Relaxation Modulus of a Polystyrene Solution.

$$G(t,\gamma) = \sum_{i} h_i(\gamma) G_i \exp\left[\frac{-t}{\lambda_i}\right]$$
(5-9)

## Nonlinear Viscoelasticity MULTIPLE STEP SHEAR STRAIN



Figure 3: Double Step Strain Experiment.

Boltzmann Superposition works if the steps are small enough to correspond to linear viscoelasticity.

$$\sigma(t) = G(t + t_1)\gamma_1 + G(t)\gamma_2$$
(5-13)

For two nonlinear (large) steps:

$$\sigma(t) = (\gamma_1 + \gamma_2)h(\gamma_1 + \gamma_2)G(t + t_1) + \gamma_2h(\gamma_2)[G(t) - G(t + t_1)]$$
(5-14)

Equation (5-14) works fine with the damping function predicted by the tube model, if the second step was in the same direction as the first step.

## Nonlinear Viscoelasticity MULTIPLE STEP SHEAR STRAIN



Figure 4: Double Step Strain Experiment with Reversal.

The double step strain with reversal is a simple experiment that **all** theories of nonlinear viscoelasticity fail to predict.



Figure 5: Spike Strain Test.

Boltzmann superposition predicts no effect of the spike, but experimentally there is an effect when  $\gamma_1$  is large enough.

#### Nonlinear Viscoelasticity START-UP OF STEADY SHEAR

Shear Stress Growth Function  $\sigma^+(t, \dot{\gamma}) \equiv \sigma(t, \dot{\gamma})$ (5-17)

Shear Stress Growth Coefficient  $\eta^+(t,\dot{\gamma}) \equiv \frac{\sigma^+}{\dot{\gamma}}$ (5-18)

First Normal Stress Growth Function  $N_1^+(t,\dot{\gamma}) \equiv \sigma_{11}(t,\dot{\gamma}) - \sigma_{22}(t,\dot{\gamma})$ 

t

(5-19)

 $\Psi_1^+(t,\dot{\gamma}) \equiv \frac{N_1^+}{\dot{\gamma}^2}$ First Normal Stress Growth Coefficient (5-20)

Linear Viscoelastic Limits:

$$\lim_{\dot{\gamma}\to 0} \left[\eta^+(t,\dot{\gamma})\right] = \eta^+(t) \tag{5-23}$$
$$\lim_{\dot{\gamma}\to 0} \left[N_1^+(t,\dot{\gamma})\right] = 0$$

Long Time Limits:

$$\lim_{t \to \infty} \left[ \eta^+(t, \dot{\gamma}) \right] = \eta(\dot{\gamma}) \tag{5-24}$$
$$\lim_{t \to \infty} \left[ N_1^+(t, \dot{\gamma}) \right] = N_1(\dot{\gamma}) \tag{5-25}$$

## Nonlinear Viscoelasticity START-UP OF STEADY SHEAR



Figure 6: Shear Stress Growth and Normal Stress Growth Coefficients for the Start-Up of Steady Shear of a Polystyrene Solution.

Both functions show stress overshoots that indicate short-time relaxation processes are activated in steady shear.

#### Nonlinear Viscoelasticity CESSATION OF STEADY SHEAR

Shear Stress Decay Function  $\sigma^{-}(t,\dot{\gamma}) \equiv \sigma(t,\dot{\gamma})$  (5-33)

Shear Stress Decay Coefficient  $\eta^{-}(t,\dot{\gamma}) \equiv \frac{\sigma^{-}}{\dot{\gamma}}$  (5-34)

First Normal Stress Decay Function  $N_1^-(t,\dot{\gamma}) \equiv \sigma_{11}(t,\dot{\gamma}) - \sigma_{22}(t,\dot{\gamma})$ 

 $N_1^-(t,\dot{\gamma}) \equiv \sigma_{11}(t,\dot{\gamma}) - \sigma_{22}(t,\dot{\gamma})$ (5-35)

First Normal Stress Decay Coefficient  $\Psi_1^-(t,\dot{\gamma}) \equiv \frac{N_1^-}{\dot{\gamma}^2}$ 

 $T(t, \dot{\gamma}) \equiv \frac{N_1^-}{\dot{\gamma}^2}$  (5-36)

Linear Viscoelastic Limits:

$$\begin{split} &\lim_{\dot{\gamma}\to 0}\left[\eta^-(t,\dot{\gamma})\right]=\eta^-(t)\\ &\lim_{\dot{\gamma}\to 0}\left[N_1^-(t,\dot{\gamma})\right]=0 \end{split}$$

Short Time Limits:

$$\lim_{t \to 0} \left[ \eta^-(t, \dot{\gamma}) \right] = \eta(\dot{\gamma})$$
$$\lim_{t \to 0} \left[ N_1^-(t, \dot{\gamma}) \right] = N_1(\dot{\gamma})$$

### Nonlinear Viscoelasticity CESSATION OF STEADY SHEAR



Figure 7: Shear Stress Decay and Normal Stress Decay Coefficients for Cessation of Steady Shear Flow of a Polyisobutylene Solution.

Both functions show stresses decaying **faster** at larger shear rates, consistent with long relaxation modes being replaced by shorter-time relaxation processes that are activated in steady shear.

#### Nonlinear Viscoelasticity NONLINEAR CREEP

Larger  $\sigma \Rightarrow$  Larger  $\dot{\gamma} \Rightarrow$  Lower  $\eta$ 

 $J(t,\sigma) \geq J(t)$ 

Larger  $\sigma \Rightarrow$  More Dissipation Processes (less stored energy)

$$J_s^0(\sigma) \le J_s^0$$



Figure 8: Creep Compliance at a Linear Viscoelastic Stress  $\sigma_1$  and two Nonlinear Stresses with  $\sigma_3 > \sigma_2 > \sigma_1$ .

As stress increases, the viscosity drops and the recoverable strain drops, consistent with large stresses inducing additional dissipation mechanisms.

### Nonlinear Viscoelasticity NONLINEAR RECOVERY



Figure 9: Creep and Creep Recovery.



Figure 10: Recoverable Compliance after Creep at Three Stress Levels (Increasing Creep Stress from Top to Bottom).

Recoverable compliance is lower at larger creep stresses because the large stress induces additional short-time relaxation processes, meaning that a smaller fraction of the deformation is stored.

# Nonlinear Viscoelasticity RECOIL DURING START-UP OF SHEAR

$$\gamma_r \equiv \gamma(t_0) - \gamma(t) = \gamma_r(t - t_0, t_0, \dot{\gamma}) \tag{5-64}$$



Figure 11: Recoil Part-Way Through Start-Up.



Figure 12: Ultimate Recoil During Start-Up Compared with the Shear and Normal Stress Growth Functions for LDPE.