Non-linear Viscoelasticity

FINITE STRAIN EFFECTS IN SOLIDS

Consider an elastic solid in shear:

Shear Stress o(y) =Gy

If we apply a shear in the opposite direction:

Shear Stress o(—y) = -Gy = —a(7)

This means that the shear stress is always an odd function of the strain.

o(v) = Ay + Ay’ + - -

The normal stress difference does not depend on the direction of the shear
strain.

First Normal Stress Difference Ni(y) = Ni(—)

This means that the first normal stress difference is always an even func-
tion of the strain.

Nl("}/) = Bl”}/z + BQ’}/4 + .-

Thus the first departures from linear viscoelasticity at small strains are:

o(y) = Ay + Axy?

Ni(vy) = 3172
A true solid has A, = B; =G

o=Gy (3-49)

N1 = G")/z (3_5O>
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FINITE STRAIN EFFECTS IN SOLIDS

The first departure from linear viscoelasticity is the non-zero normal stress
difference.

N
Recoverable Strain = o = 7 = — (3-51)
o

The Lodge rubber-like liquid model predicts

N
Strain = The Lodge-Meissner Relation (3-35)
o
: Ny
Recoverable Strain =~ 7., = Gy (3-52)
o

FINITE STRAIN RATE EFFECTS IN
LIQUIDg

Consider a liquid sheared at a constant rate:

Shear Stress o(§) =ny
If we apply the shear rate in the opposite direction:

Shear Stress o(—%) = —ny=—0c(%)

This means that the shear stress is always an odd function of the strain
rate.

o(¥) = Ay + Asd + - -
Ay is simply the viscosity 7.

(A
Apparent viscosity n(%) = ﬁ =no+ A+ -
Y
The apparent viscosity is an even function since it is obtained by dividing

two odd functions.



Non-linear Viscoelasticity

FINITE STRAIN EFFECTS IN LIQUIDS

The normal stress difference does not depend on the direction.

First Normal Stress Difference N1 (%) = Ni(—%)

This means that the first normal stress difference is always an even func-
tion of the strain rate.

Ni(%) = By + Boy*t + - - -

N
First Normal Stress Coefficient U, = —21 (3-39)
Y
At low shear rates this is a constant
W10 = lim [,(3)] =2 / Gi(s)sds (3-40)
= 0
U1 = 2157 (3-42)
. G’
U= Qlli)l’(l) {F} (3-43)

At low shear rates o > N; with

oc=ny and N; =V

At what shear rate does 0 = N;?

770_ 1 1

7= \1’1,0 N 2770J£ N ﬁ

For shear rates larger than 1/(2)) nonlinearities are important.
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SEPARABILITY AT LONG TIMES

For nonlinear stress relaxation at long times, the stress is separable into
a strain dependent part and a time dependent part.

o(t,y) = vh(v)G(t) (3-67)

The time dependent part is simply the linear viscoelastic stress relaxation
modulus G(t). The strain dependent part is known as the damping function

h(7).

G(t,v) = h(7)G(2) (3-68)
Ni(t,~) = v*h(7)G(t) (3-69)
h(y) <1

Physically, this means that extra relaxations all take place at short times.
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SEPARABILITY AT LONG TIMES

G(t,v) = h(7)G(t,0) (3-68)
Ni(t,7) = 7*h(7)G(t,0) (3-69)
o Nl(tvfy)
G(t,y) = v
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Figure 1: Strain dependence of relaxation modulus G(t) (open symbols)

and N;/~? (filled symbols) for low density polyethylene. Strain varies from
v = 0.2 (top) to v = 30.9 (bottom).
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SEPARABILITY AT LONG TIMES

Damping function h(v) = GE0)
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Figure 2: Damping function h(y) for the low density polyethylene melt of

Figure 1.

Wagner Damping Function — h(y) = exp(—nv) n=014  (3-72)

Osaki Damping Function

h(7) = aexp(—n17) + (1 — a) exp(—nz7)
(3-73)
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EXTRA RELAXATION AT SHORT TIMES

G(t,v) = h(7)G(t,0) (3-68)
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Figure 3: Nonlinear relaxation modulus G(t) for a 6% polystyrene solution

at 30°C.
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EXTRA RELAXATION AT SHORT TIMES
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Figure 4: Reduced nonlinear relaxation modulus G(t,7)/h(y), calculated

from the polystyrene solution data of Figure 3.
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EXTRA RELAXATION AT SHORT TIMES
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Figure 5: Theoretical nonlinear relaxation modulus at four strain levels.
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Figure 6: Damping function for polystyrene solutions of different concentra-

tions and different molecular weights. Curves are predictions of the tube
model.
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SHEAR THINNING

Since large deformation activates additional relaxation mechanisms, the
apparent viscosity and first normal stress coefficient decrease as shear rate
increases.
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Figure 7: Shear rate dependence of viscosity and first normal stress coefficient
for low density polyethylene.
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START-UP OF STEADY SHEAR
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Figure 8: Start-up of steady shear for a 7.55% polybutadiene solution.

The overshoot indicates that short time relaxation processes are at work
in steady shear as well as in stress relaxation.
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STEADY SHEAR

|<—AX—> X1

Figure 9: Steady simple shear flow.

A
Shear Strain v = Tx (1-10)
P |4
Shear Rate Y= |’721| = |’)/12| = T (4—1)
011 012
Stress Tensor 045 = 091 022 (1—29)
033
Shear Stress o = |og1| = |o19] (4-2)
L o
Viscosity n=-—- (4-5)
f}/
First Normal Stress Difference N, =011 — 099 (4-3)
. : N
First Normal Stress Coefficient U= (4-6)
Y
Second Normal Stress Difference Ny = 099 — 033 (4-4)
. Ny
Second Normal Stress Coeflicient Uy = — (4-3)
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Figure 10: Shear rate dependence of apparent viscosity.

Shear thinning dominates the apparent viscosity at high rates.
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APPARENT VISCOSITY MODELS

Power Law Viscosity n=K4"! (4-8)

n is the power law index.

Shear Stress o=ny=Ky" (4-9)

Since we know that 7 = 7y at 4 = 1/A\ (where shear thinning starts) we
can write K in terms of ny and .

Power Law Model 7 =g |A\y|" " (4-10)
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Figure 11: The power law only holds at high shear rates.

Cross Model 1 =9 [1+ M| (4-11)

m=1-—n (4-12)

n—1)/2

Carreau Model 5 =1no [1+ ()\f'y)Q]( (4-14)
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Recall the temperature dependence of the stress relaxation modulus:

G(t,T) = brG (— TO)

The zero shear rate viscosity

no(T) :/ G(t,T)dt:bT/ G (i,TO) dt
0 0 ar

Change integration variables s = t/ar, so ds = dt/ar.
770(T) = aTbT/ G (S, T()) dS = CLTbTﬁ()(To)
0
For the apparent viscosity

n(%,T) = arbrn(yar, To)

Figure 12: Apparent viscosity of low density Polyethylene at seven temper-
atures. From top to bottom: 115°C, 130°C, 150°C, 170°C, 190°C, 210°C,
240°C.
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ORI R GRS

Zero Shear Rate Viscosity of monodisperse linear polymers:

no = KM** (4-16)
Zero Shear Rate Viscosity of polydisperse linear polymers:

no = KM2* (4-17)
The weight average molecular weight has the following blending law:

Mw = wlMl + ’UJQMQ (4—18)

where w; and wy are weight fractions.
Combining these three equations we get a blending rule for the zero shear

rate viscosity.

1/3.4 1/3.4 1/3.4
770/ = w1770/1 + w2770/2 (4-19)
Relaxation Time:
Mo 3.4
A= —=~ M,
GY

First Normal Stress Coefficient:

Ui = 215 (3-42)
Since J? is independent of M for entangled polymers,

Wy~ MS® (4-32)

Since J? is nearly independent of T

dlog Wy 5 dlogng
ar dT

(4-35)
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Figure 13: Apparent viscosity of monodisperse polystyrenes at 183°C. From
top to bottom, M = 242000, M = 217000, M = 179000, M = 117000,
M = 48500. Line has slope —0.82.
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APPARENT VISCOSITY

At shear rates much larger than 1/A, the apparent viscosity cannot be
measured in rotational rheometers. For 4 > 1/, the polymer tries to behave

elastically (and leaves the gap).
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Figure 14: Apparent viscosity of a polystyrene melt. Open circles - cone and
plate data. Filled circles - capillary data.
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THE COX-MERZ EMPIRICISM

) =Wl (W=7 (4-41)

Can a linear viscoelastic property, |n*(w)|, be related to a nonlinear one
n(y)?

COMPARATIVE PLOTS OF THE VISCOSITY QF BRANCHED POLYCARBONATES
SAMPLE 795-58C AT 300°C
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Figure 15: Cox-Merz empiricism for a branched polycarbonate at 300°C.
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Figure 16: Cox-Merz empiricism at three temperatures for linear polyolefins.



