
Non-linear Viscoelasticity
FINITE STRAIN EFFECTS IN SOLIDS

Consider an elastic solid in shear:

Shear Stress σ(γ) = Gγ

If we apply a shear in the opposite direction:

Shear Stress σ(−γ) = −Gγ = −σ(γ)

This means that the shear stress is always an odd function of the strain.

σ(γ) = A1γ + A2γ
3 + · · ·

The normal stress difference does not depend on the direction of the shear
strain.

First Normal Stress Difference N1(γ) = N1(−γ)

This means that the first normal stress difference is always an even func-
tion of the strain.

N1(γ) = B1γ
2 + B2γ

4 + · · ·

Thus the first departures from linear viscoelasticity at small strains are:

σ(γ) = A1γ + A2γ
3

N1(γ) = B1γ
2

A true solid has A1 = B1 = G

σ = Gγ (3-49)

N1 = Gγ2 (3-50)
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Non-linear Viscoelasticity
FINITE STRAIN EFFECTS IN SOLIDS

The first departure from linear viscoelasticity is the non-zero normal stress
difference.

Recoverable Strain γ∞ = γ =
N1

σ
(3-51)

The Lodge rubber-like liquid model predicts

Strain =
N1

σ
The Lodge-Meissner Relation (3-35)

Recoverable Strain γ∞ =
N1

2σ
(3-52)

FINITE STRAIN RATE EFFECTS IN
LIQUIDS

Consider a liquid sheared at a constant rate:

Shear Stress σ(γ̇) = ηγ̇

If we apply the shear rate in the opposite direction:

Shear Stress σ(−γ̇) = −ηγ̇ = −σ(γ̇)

This means that the shear stress is always an odd function of the strain
rate.

σ(γ̇) = A1γ̇ + A2γ̇
3 + · · ·

A1 is simply the viscosity η0.

Apparent viscosity η(γ̇) ≡ σ(γ̇)

γ̇
= η0 + A2γ̇

2 + · · ·

The apparent viscosity is an even function since it is obtained by dividing
two odd functions.
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Non-linear Viscoelasticity
FINITE STRAIN EFFECTS IN LIQUIDS

The normal stress difference does not depend on the direction.

First Normal Stress Difference N1(γ̇) = N1(−γ̇)

This means that the first normal stress difference is always an even func-
tion of the strain rate.

N1(γ̇) = B1γ̇
2 + B2γ̇

4 + · · ·

First Normal Stress Coefficient Ψ1 ≡
N1

γ̇2
(3-39)

At low shear rates this is a constant

Ψ1,0 ≡ lim
γ̇→0

[Ψ1(γ̇)] = 2

∫ ∞

0

G(s)sds (3-40)

Ψ1,0 = 2η2
0J

0
s (3-42)

Ψ1,0 = 2 lim
ω→0

[
G′

ω2

]
(3-43)

At low shear rates σ > N1 with

σ = η0γ̇ and N1 = Ψ1,0γ̇
2

At what shear rate does σ = N1?

γ̇ =
η0

Ψ1,0

=
1

2η0J0
s

=
1

2λ

For shear rates larger than 1/(2λ) nonlinearities are important.
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Non-linear Viscoelasticity
SEPARABILITY AT LONG TIMES

For nonlinear stress relaxation at long times, the stress is separable into
a strain dependent part and a time dependent part.

σ(t, γ) = γh(γ)G(t) (3-67)

The time dependent part is simply the linear viscoelastic stress relaxation
modulus G(t). The strain dependent part is known as the damping function
h(γ).

G(t, γ) = h(γ)G(t) (3-68)

N1(t, γ) = γ2h(γ)G(t) (3-69)

h(γ) ≤ 1

Physically, this means that extra relaxations all take place at short times.
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Non-linear Viscoelasticity
SEPARABILITY AT LONG TIMES

G(t, γ) = h(γ)G(t, 0) (3-68)

N1(t, γ) = γ2h(γ)G(t, 0) (3-69)

G(t, γ) =
N1(t, γ)

γ2

Figure 1: Strain dependence of relaxation modulus G(t) (open symbols)
and N1/γ

2 (filled symbols) for low density polyethylene. Strain varies from
γ = 0.2 (top) to γ = 30.9 (bottom).
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Non-linear Viscoelasticity
SEPARABILITY AT LONG TIMES

Damping function h(γ) =
G(t, γ)

G(t, 0)

Figure 2: Damping function h(γ) for the low density polyethylene melt of
Figure 1.

Wagner Damping Function h(γ) = exp(−nγ) n = 0.14 (3-72)

Osaki Damping Function h(γ) = a exp(−n1γ) + (1− a) exp(−n2γ)
(3-73)
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Non-linear Viscoelasticity
EXTRA RELAXATION AT SHORT TIMES

G(t, γ) = h(γ)G(t, 0) (3-68)

Figure 3: Nonlinear relaxation modulus G(t) for a 6% polystyrene solution
at 30◦C.
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Non-linear Viscoelasticity
EXTRA RELAXATION AT SHORT TIMES

G(t, 0) =
G(t, γ)

h(γ)

Figure 4: Reduced nonlinear relaxation modulus G(t, γ)/h(γ), calculated
from the polystyrene solution data of Figure 3.
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Non-linear Viscoelasticity
EXTRA RELAXATION AT SHORT TIMES

Figure 5: Theoretical nonlinear relaxation modulus at four strain levels.
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Non-linear Viscoelasticity
DAMPING FUNCTION FROM

MOLECULAR THEORY

Figure 6: Damping function for polystyrene solutions of different concentra-
tions and different molecular weights. Curves are predictions of the tube
model.
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Non-linear Viscoelasticity
SHEAR THINNING

Since large deformation activates additional relaxation mechanisms, the
apparent viscosity and first normal stress coefficient decrease as shear rate
increases.

Figure 7: Shear rate dependence of viscosity and first normal stress coefficient
for low density polyethylene.
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Non-linear Viscoelasticity
START-UP OF STEADY SHEAR

Figure 8: Start-up of steady shear for a 7.55% polybutadiene solution.

The overshoot indicates that short time relaxation processes are at work
in steady shear as well as in stress relaxation.
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Non-linear Viscoelasticity
STEADY SHEAR

Figure 9: Steady simple shear flow.

Shear Strain γ =
∆x

h
(1-10)

Shear Rate γ̇ = |γ̇21| = |γ̇12| =
|V |
h

(4-1)

Stress Tensor σij =

 σ11 σ12

σ21 σ22

σ33

 (1-29)

Shear Stress σ ≡ |σ21| = |σ12| (4-2)

Viscosity η ≡ σ

γ̇
(4-5)

First Normal Stress Difference N1 ≡ σ11 − σ22 (4-3)

First Normal Stress Coefficient Ψ1 ≡
N1

γ̇2
(4-6)

Second Normal Stress Difference N2 ≡ σ22 − σ33 (4-4)

Second Normal Stress Coefficient Ψ2 ≡
N2

γ̇2
(4-3)
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Non-linear Viscoelasticity
APPARENT VISCOSITY IN STEADY

SHEAR

Figure 10: Shear rate dependence of apparent viscosity.

Shear thinning dominates the apparent viscosity at high rates.
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Non-linear Viscoelasticity
APPARENT VISCOSITY MODELS

Power Law Viscosity η = Kγ̇n−1 (4-8)

n is the power law index.

Shear Stress σ = ηγ̇ = Kγ̇n (4-9)

Since we know that η = η0 at γ̇ = 1/λ (where shear thinning starts) we
can write K in terms of η0 and λ.

Power Law Model η = η0 |λγ̇|n−1 (4-10)

Figure 11: The power law only holds at high shear rates.

Cross Model η = η0 [1 + |λγ̇|m]
−1

(4-11)

m = 1− n (4-12)

Carreau Model η = η0

[
1 + (λγ̇)2

](n−1)/2
(4-14)
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Non-linear Viscoelasticity
TEMPERATURE DEPENDENCE OF

APPARENT VISCOSITY

Recall the temperature dependence of the stress relaxation modulus:

G(t, T ) = bT G

(
t

aT

, T0

)
The zero shear rate viscosity

η0(T ) =

∫ ∞

0

G(t, T )dt = bT

∫ ∞

0

G

(
t

aT

, T0

)
dt

Change integration variables s = t/aT , so ds = dt/aT .

η0(T ) = aT bT

∫ ∞

0

G (s, T0) ds = aT bT η0(T0)

For the apparent viscosity

η(γ̇, T ) = aT bT η(γ̇aT , T0)

Figure 12: Apparent viscosity of low density Polyethylene at seven temper-
atures. From top to bottom: 115◦C, 130◦C, 150◦C, 170◦C, 190◦C, 210◦C,
240◦C.
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Non-linear Viscoelasticity
MOLECULAR WEIGHT DEPENDENCE
OF VISCOSITY AND NORMAL STRESS

COEFFICIENT

Zero Shear Rate Viscosity of monodisperse linear polymers:

η0 = KM3.4 (4-16)

Zero Shear Rate Viscosity of polydisperse linear polymers:

η0 = KM3.4
w (4-17)

The weight average molecular weight has the following blending law:

Mw = w1M1 + w2M2 (4-18)

where w1 and w2 are weight fractions.
Combining these three equations we get a blending rule for the zero shear

rate viscosity.

η
1/3.4
0 = w1η

1/3.4
0,1 + w2η

1/3.4
0,2 (4-19)

Relaxation Time:

λ =
η0

G0
N

∼ M3.4
w

First Normal Stress Coefficient:

Ψ1,0 = 2η2
0J

0
s (3-42)

Since J0
s is independent of M for entangled polymers,

Ψ1,0 ∼ M6.8
w (4-32)

Since J0
s is nearly independent of T ,

d log Ψ1,0

dT
∼= 2

[
d log η0

dT

]
(4-35)
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Non-linear Viscoelasticity
MOLECULAR WEIGHT DEPENDENCE

OF APPARENT VISCOSITY

Figure 13: Apparent viscosity of monodisperse polystyrenes at 183◦C. From
top to bottom, M = 242000, M = 217000, M = 179000, M = 117000,
M = 48500. Line has slope −0.82.
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Non-linear Viscoelasticity
APPARENT VISCOSITY

At shear rates much larger than 1/λ, the apparent viscosity cannot be
measured in rotational rheometers. For γ̇ > 1/λ, the polymer tries to behave
elastically (and leaves the gap).

Figure 14: Apparent viscosity of a polystyrene melt. Open circles - cone and
plate data. Filled circles - capillary data.
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Non-linear Viscoelasticity
THE COX-MERZ EMPIRICISM

η(γ̇) = |η∗(ω)| (ω = γ̇) (4-41)

Can a linear viscoelastic property, |η∗(ω)|, be related to a nonlinear one
η(γ̇)?

Figure 15: Cox-Merz empiricism for a branched polycarbonate at 300◦C.

Figure 16: Cox-Merz empiricism at three temperatures for linear polyolefins.
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