Time-Temperature Superposition

Rouse Relaxation Modulus:

$$
G(t)=\frac{\rho(T) R T}{M} \sum_{p=1}^{N} e^{-t p^{2} / \lambda_{R}}
$$

Rouse Relaxation Time:

$$
\lambda_{R}=\frac{a^{2} N^{2} \zeta(T)}{6 \pi^{2} k T}
$$

Reptation Relaxation Modulus:

$$
G(t)=\frac{8}{\pi^{2}} \frac{\rho(T) R T}{M_{e}} \sum_{p \text { odd }}^{N} \frac{1}{p^{2}} e^{-p^{2} t / \lambda_{d}}
$$

Reptation Relaxation Time:

$$
\lambda_{d}=\frac{a^{2} N^{2} \zeta(T)}{\pi^{2} k T} \frac{M}{M_{e}}
$$

Both models have the same temperature dependence. This is hardly surprising, since reptation is just Rouse motion confined in a tube.

Modulus Scale $\quad G \sim \rho(T) T$
Time Scale $\quad \lambda \sim \frac{\zeta(T)}{T} \sim \lambda_{N}$
Since the friction factor is related to the shortest Rouse mode λ_{N}.

$$
\lambda_{N}=\frac{a^{2} \zeta(T)}{6 \pi^{2} k T}
$$

Time-Temperature Superposition METHOD OF REDUCED VARIABLES

All relaxation modes scale in the same way with temperature.

$$
\begin{equation*}
\lambda_{i}(T)=a_{T} \lambda_{i}\left(T_{0}\right) \tag{2-116}
\end{equation*}
$$

a_{T} is a time scale shift factor
T_{0} is a reference temperature ($a_{T} \equiv 1$ at $T=T_{0}$).

$$
\begin{equation*}
G_{i}(T)=\frac{G_{i}\left(T_{0}\right) T \rho}{T_{0} \rho_{0}} \tag{2-117}
\end{equation*}
$$

Recall the Generalized Maxwell Model

$$
\begin{equation*}
G(t)=\sum_{i=1}^{N} G_{i} \exp \left(-t / \lambda_{i}\right) \tag{2-25}
\end{equation*}
$$

with full temperature dependences of the Rouse (and Reptation) Model

$$
\begin{equation*}
G(t, T)=\frac{T \rho}{T_{0} \rho_{0}} \sum_{i=1}^{N} G_{i}\left(T_{0}\right) \exp \left\{-t /\left[\lambda_{i}\left(T_{0}\right) a_{T}\right]\right\} \tag{2-118}
\end{equation*}
$$

We simplify this by defining reduced variables that are independent of temperature.

$$
\begin{gather*}
G_{r}(t) \equiv G(t, T) \frac{T_{0} \rho_{0}}{T \rho} \tag{2-119}\\
t_{r} \equiv \frac{t}{a_{T}} \tag{2-120}\\
G_{r}\left(t_{r}\right)=\sum_{i=1}^{N} G_{i}\left(T_{0}\right) \exp \left[-t_{r} / \lambda_{i}\left(T_{0}\right)\right] \tag{2-118}
\end{gather*}
$$

Plot of G_{r} as a function of t_{r} is a universal curve independent of temperature.

Time-Temperature Superposition EMPIRICAL MASTER CURVE

Figure 1: Reduced Variables Generates a Master Curve from the Stress Relaxation Modulus Data for a Polymer Melt.

Can now estimate the relaxation modulus at any temperature in the range $192 \mathrm{~K}<T<350 \mathrm{~K}$, covering EIGHTEEN ORDERS OF MAGNITUDE IN TIME!

Time-Temperature Superposition TEMPERATURE DEPENDENCE OF VISCOSITY (P. 1)

Recall

$$
\begin{align*}
\eta_{0} & =\int_{0}^{\infty} G(t) d t \tag{2-19}\\
G_{r}(t) & \equiv G(t, T) \frac{T_{0} \rho_{0}}{T \rho} \tag{2-119}
\end{align*}
$$

Substitute for $G(t)$.

$$
\eta_{0}(T)=\frac{T \rho}{T_{0} \rho_{0}} \int_{0}^{\infty} G_{r}(t) d t
$$

Change integration variable to $t_{r} \equiv t / a_{T}$, so $d t=a_{T} d t_{r}$.

$$
\begin{equation*}
\eta_{0}(T)=\frac{a_{T} T \rho}{T_{0} \rho_{0}} \int_{0}^{\infty} G_{r}\left(t_{r}\right) d t_{r} \tag{2-122}
\end{equation*}
$$

Since $G_{r}\left(t_{r}\right)$ refers to the reference temperature T_{0}

$$
\begin{equation*}
\eta_{0}\left(T_{0}\right)=\int_{0}^{\infty} G\left(t, T_{0}\right) d t=\int_{0}^{\infty} G_{r}\left(t_{r}\right) d t_{r} \tag{2-123}
\end{equation*}
$$

we can rewrite (2-122)

$$
\begin{equation*}
\eta_{0}(T)=\frac{a_{T} T \rho}{T_{0} \rho_{0}} \eta_{0}\left(T_{0}\right) \tag{2-125}
\end{equation*}
$$

Solve for a_{T}

$$
\begin{equation*}
a_{T}=\frac{\eta_{0}(T) T_{0} \rho_{0}}{\eta_{0}\left(T_{0}\right) T \rho} \tag{2-126}
\end{equation*}
$$

Since viscosity is far more temperature dependent than $T \rho$

$$
\begin{equation*}
a_{T} \cong \frac{\eta_{0}(T)}{\eta_{0}\left(T_{0}\right)} \tag{2-127}
\end{equation*}
$$

Time-Temperature Superposition TEMPERATURE DEPENDENCE OF VISCOSITY (P. 2)

Arrhenius equation - Viscosity is thermally activated (first applied to viscosity by Andrade)

$$
\eta_{0} \sim \exp \left[\frac{E_{a}}{R T}\right] \quad T>T_{g}+100 \mathrm{~K}
$$

E_{a} is the activation energy for flow

$$
\begin{equation*}
\frac{\eta_{0}(T)}{\eta_{0}\left(T_{0}\right)}=\exp \left[\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{o}}\right)\right] \quad T>T_{g}+100 \mathrm{~K} \tag{2-128}
\end{equation*}
$$

Doolittle equation - Viscosity is determined by free volume v_{f}

$$
\begin{align*}
\eta_{0} & \sim \exp \left[\frac{B\left(v-v_{f}\right)}{v_{f}}\right] \\
\ln \eta & =\ln A+\frac{B\left(v-v_{f}\right)}{v_{f}} \tag{10-11}
\end{align*}
$$

If one assumes free volume v_{f} is proportional to temperature

$$
\begin{equation*}
v_{f}=v_{f}\left(T_{g}\right)+\alpha_{f}\left(T-T_{g}\right) \tag{10-12}
\end{equation*}
$$

one gets the WLF (Williams-Landel-Ferry) EQUATION

$$
\begin{equation*}
\log \eta_{0}(T)=\log \eta_{0}\left(T_{g}\right)-\frac{\left(B / 2.3 f_{g}\right)\left(T-T_{g}\right)}{\left(f_{g} / \alpha_{f}\right)+T-T_{g}} \tag{10-13}
\end{equation*}
$$

$f_{g}=v_{f}\left(T_{g}\right) /\left[v_{f}\left(T_{g}\right)+v_{o}\left(T_{g}\right)\right]$ is the fractional free volume at T_{g}
WLF EQUATION for an arbitrary reference temperature T_{0}

$$
\begin{equation*}
\log \left(a_{T}\right)=\frac{-C_{1}^{0}\left(T-T_{0}\right)}{\left[C_{2}^{0}+T-T_{0}\right]} \tag{2-129}
\end{equation*}
$$

At high temperatures WLF approaches Arrhenius behavior with an activation energy

$$
E_{a}=2.303 R C_{1}^{0} C_{2}^{0} \cong 4 \mathrm{kcal} / \mathrm{mole}
$$

Time-Temperature Superposition SUMMARY

The modulus scale shift factor is really more complicated than

$$
\begin{equation*}
G_{r}(t) \equiv G(t, T) \frac{T_{0} \rho_{0}}{T \rho} \tag{2-119}
\end{equation*}
$$

because the entanglement molecular weight can depend weakly on temperature. Thus we generally write

$$
G_{r}(t) \equiv \frac{G(t, T)}{b_{T}}
$$

The Rouse Model has

$$
b_{T}=\frac{T \rho}{T_{0} \rho_{0}}
$$

but most polymers do not obey this equation, so b_{T} is treated as an empirical modulus scale shift (analogous to a_{T} for the time scale shift, but b_{T} is much smaller).

$$
\begin{gather*}
t_{r} \equiv \frac{t}{a_{T}} \tag{2-120}\\
G(t, T)=b_{T} G\left(\frac{t}{a_{T}}, T_{0}\right) \\
G^{\prime}(\omega, T)=b_{T} G^{\prime}\left(\omega a_{T}, T_{0}\right) \\
G^{\prime \prime}(\omega, T)=b_{T} G^{\prime \prime}\left(\omega a_{T}, T_{0}\right) \\
J(t, T)
\end{gather*} \begin{aligned}
J\left(\frac{t}{a_{T}}, T_{0}\right) \\
b_{T}
\end{aligned}
$$

Time-Temperature Superposition EXAMPLE

Figure 2: Time-Temperature Superposition for Storage Compliance of Poly(N-octyl methacrylate) with $T_{0}=100^{\circ} \mathrm{C}$.

Time-Temperature Superposition COUNTER-EXAMPLE

Figure 3: Failure of Time-Temperature Superposition in the Glass Transition Zone of Polystyrene with $T_{0}=126.7^{\circ} \mathrm{C}$.

Time-Temperature Superposition does not always work!!!

