
Molecular Theories of Linear Viscoelasticity
THE TUBE MODEL

De Gennes recognized that the complex many body problem of an entan-
gled polymer diffusing in the melt is simple if we focus on a single chain, with
the surrounding chains effectively confining the chain to a tube-like region.

Figure 1: The Tube Model. Surrounding chains confine every chain to move
in a tube-like region.

P. G. de Gennes, J. Chem. Phys., vol. 55, p. 572 (1971).
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Molecular Theories of Linear Viscoelasticity
REPTATION SCALING

The chain moves by Rouse motion confined to a tube.

Curvilinear Diffusion Along Tube is DC =
kT

ζN
∼ 1

N

To move a distance equal to its size R ∼ N1/2, the chain must diffuse
along the tube a distance equal to the contour length of the tube L ∼ N .

Tube Disengagement Time λd
∼=

L2

DC

∼ N3

Recall the Plateau Modulus

G0
N =

ρRT

Me

independent of M (2-20)

The tube disengagement time is the terminal time.
The plateau modulus is the terminal modulus.

Viscosity η0
∼= λdG

0
N ∼ N3

is close to the experimental result.

η0 ∝M3.4 (M > MC) (2-107)

The through-space diffusion coefficient

D ∼=
R2

λd

∼ 1

N2

is in excellent agreement with experiment.
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Molecular Theories of Linear Viscoelasticity
DOI-EDWARDS THEORY (P. 1)

On short time scales the chain relaxes by unrestricted Rouse motion.
The Rouse relaxation time of an entanglement strand is λe.

Recall the Rouse relaxation time of a chain of N beads.

λR =
a2N2ζ

6π2kT

The Rouse time of an entanglement strand is

λe =
a2N2

e ζ

6π2kT

The plateau modulus is the value of the Rouse relaxation modulus when
the entanglement strand has relaxed.

G0
N
∼= G(λe) (2-108)

The Rouse model describes relaxation of long chains up to time scale λe.

G(t) = G0
N(λe/t)

1/2 t < λe (2-109)

At λe, the chain finds out it is trapped in a tube!

All Rouse motion for times longer than λe is restricted to the tube.

The chain wriggles back and forth in the tube until it abandons the tube.

Tube disengagement takes a long time, so there is a large period of time
where essentially no relaxation takes place (the entanglement plateau).
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Molecular Theories of Linear Viscoelasticity
DOI-EDWARDS THEORY (P. 2)

Figure 2: The Tube Model and Tube Disengagement.
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Molecular Theories of Linear Viscoelasticity
DOI-EDWARDS THEORY (P. 3)

Stress is proportional to the fraction of initial tube still occupied at time
t.

G(t) = G0
N

8

π2

N∑
p odd

1

p2
e−p2t/λd t > λe (2-110)

Compare to the Rouse result.

G(t) =
ρRT

M

N∑
p=1

e−p2t/λR (2-94)

The N modes of the Rouse model are all equally weighted.
The 1/p2 inside the sum in (2-110) and the fact that the sum is only over

odd p, makes the Doi-Edwards model close to the Maxwell model with a
single relaxation time.

The relaxation time is the tube disengagement time λd.

λd =
a2ζM3

MeM2
0 π2kT

(2-111)

Compare to the Rouse time.

λR =
a2ζM2

6π2M2
0 kT

The reptation time is longer by

λd

λR

=
6M

Me

Recall the Rouse time of an entanglement strand

λe =
a2ζM2

e

6π2M2
0 kT

The entanglement plateau spans a time range

λd

λe

= 6

(
M

Me

)3
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Molecular Theories of Linear Viscoelasticity
DOI-EDWARDS THEORY (P. 4)

Figure 3: Doi-Edwards Reptation Predictions. (a) Relaxation Modulus (b)
Storage Modulus
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Molecular Theories of Linear Viscoelasticity
DOI-EDWARDS THEORY (P. 5)

G(t) = G0
N

8

π2

N∑
p odd

1

p2
e−p2t/λd (2-110)

λd =
a2ζM3

MeM2
0 π2kT

(2-111)

Viscosity

η0 =

∫ ∞

0

G(t)dt (2-19)

η0 =
1

12

ρN0a
2ζM3

M2
e M2

0

=
π2

12
G0

Nλd text has typo! (2-112)

Steady State Compliance

J0
S =

1

η2
0

∫ ∞

0

G(t)tdt (2-33)

J0
S =

6

5

Me

ρRT
=

6

5G0
N

text has typo! (2-113)

independent of chain length.

Longest Relaxation Time

λd =
12Meη0

π2ρRT
=

10

π2
η0J

0
S text has typo! (2-114)

Thus both Rouse and Reptation Models predict

λ ∼= η0J
0
S
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Molecular Theories of Linear Viscoelasticity
COMPARISON WITH EXPERIMENT

Figure 4: Viscosity and Steady State Compliance
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Significance of λ ∼= η0J
0
S

λ, η0 and J0
S are terminal properties associated with liquid flow.

G′′(ω) = η0ω

G′(ω) = J0
s η2

0ω
2

These power laws intersect at

ωx =
1

J0
s η0

=
1

λ
and G′(ωx) = G′′(ωx) =

1

J0
s

Figure 5: Storage and Loss Moduli Terminal Slopes of 2 and 1.
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