
Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL (P. 1)

Model polymer dynamics by a system of N + 1 beads connected by N
springs.

Figure 1: Mapping the Polymer Chain onto a Chain of Beads Connected by
Springs.

ROUSE SCALING

Recall that a polymer chain (or part of a chain) acts like a linear spring
when stretched.

Spring Length a

Spring Constant
kT

a2

Bead Friction ζ
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Molecular Theories of Linear Viscoelasticity
ROUSE SCALING (P. 2)

Chain Friction ζN

Einstein Relation:

Diffusion Coefficient D =
kT

ζN
∼ 1

N

The relaxation time λ is the time the chain takes to diffuse a distance
equal to its size R.

λ ∼=
R2

D
∼ NR2 ∼ N2

since R = aN1/2.
The terminal modulus G(λ) is kT per chain

G(λ) ∼= νkT =
ρRT

M
∼ 1

N

ν = ρN0/M is the number density of chains
ρ is the density
R = N0k is the ideal gas constant

Viscosity η ∼= λG(λ) ∼ N

Thus the Rouse model correctly predicts the viscosity proportional to
chain length for an unentangled polymer.
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Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL (P. 3)

Rouse solved the system of coupled differential equations that describe
the chain of springs, and got

G(t) =
ρRT

M

N∑
p=1

e−t/λp (2-94)

with Rouse relaxation times (eigenvalues)

λp =
a2N2ζ

6π2p2kT
text has typo! P ≡ N (2-95)

Equation (2-94) is in the form of a generalized Maxwell model with N
modes of equal weight. From equations (2-94) and (2-95) we can calculate
all viscoelastic functions.

Viscosity η0 =

∫ ∞

0

G(t)dt =
ζρa2MN0

36M2
0

(2-96)

N0 is Avogadro’s Number
M0 = M/N is the molecular weight per spring
Rearranging (2-96)

a2ζ =
36M2

0 η0

ρMN0

Substitute into (2-95)

λp =
36M2

0 η0N
2

6π2p2kTρMN0

Canceling terms and using M = M0N

λp =
6η0M

π2p2ρRT
(2-97)

The longest relaxation time (p = 1) is

λR =
6η0M

π2ρRT
=

0.608η0M

ρRT
(2-98)
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Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL (P. 4)

There are N relaxation modes in the Rouse model

λp =
6η0M

π2p2ρRT
(2-97)

with p = 1, 2, 3, ......, N

The longest relaxation time is

λR =
6η0M

π2ρRT
=

0.608η0M

ρRT
(2-98)

whereas in our scaling argument we concluded

λR
∼=

η0M

ρRT

Scaling always fails to give a prefactor of order unity (in this case 6/π2).

SIGNIFICANCE OF THE LONGEST RELAXATION
TIME

• Relaxation of internal stresses occurs on this time scale

• Determines the diffusion coefficient D ∼= R2/λ1

• Determines the viscosity (equation 2-98)

For unentangled polymers,

λR ∼ M2

The longest mode involves all N springs

Shorter modes involve smaller numbers of springs, with

λp =
λR

p2

The shortest mode

λN =
λR

N2
=

a2ζ

6π2kT
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Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL (P. 5)

G(t) =
ρRT

M

N∑
p=1

e−t/λp (2-94)

OSCILLATORY SHEAR

Storage Modulus

G′(ω) ≡ ω

∫ ∞

0

G(s) sin(ωs)ds (2-65)

G′(ω) =
ρRT

M

N∑
p=1

ω2λ2
p

1 + ω2λ2
p

(2-99)

and Loss Modulus

G′′(ω) ≡ ω

∫ ∞

0

G(s) cos(ωs)ds (2-66)

G′′(ω) =
ρRT

M

N∑
p=1

ωλp

1 + ω2λ2
p

(2-100)

Equations (2-94), (2-99) and (2-100) are special cases of the generalized
Maxwell model

G(t) =
N∑

i=1

Gi exp(−t/λi) (2-25)

G′(ω) =
N∑

p=1

Gi(ωλp)
2

1 + (ωλp)2
(2-67)

G′′(ω) =
N∑

p=1

Giωλp

1 + (ωλp)2
(2-68)

with all Gi =
ρRT

M
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Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL (P. 6)

Dimensionless Moduli

[G′]R ≡
G′M

ρRT
=

N∑
p=1

ω2λ2
p

1 + ω2λ2
p

[G′′]R ≡
G′′M

ρRT
=

N∑
p=1

ωλp

1 + ω2λ2
p

These moduli are UNIVERSAL for the Rouse model in the large N limit.

Figure 2: Rouse Model Predictions of Storage and Loss Moduli. Note that
τ1 ≡ λ1.
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Molecular Theories of Linear Viscoelasticity
THE ROUSE MODEL TERMINAL

RESPONSE

G′ =

[
1.08ρRT

M

]
ω2λ2

R =
0.4Mη2

0ω
2

ρRT
(2-102)

G′′ =
1.645ρRTωλR

M
= ωη0 (2-103)

Recall the steady state compliance

J0
S = lim

ω→0

(
G′

(G′′)2

)
J0

S =
0.4M

ρRT
(2-101)

HIGH FREQUENCY (SHORT TIME) RESPONSE

Rouse model is a POWER LAW at short times

G(t) = Ct−1/2 (2-104a)

C =

√
3ρRTη0

2πM
(2-104b)

G′(ω) = G′′(ω) =

√
π

2
Cω1/2 (2-106)

tan(δ) =
G′′

G′ = 1

Whenever G(t) is a power law

G(t) = ct−m (2-26)

The storage and loss moduli are parallel power laws

G′(ω) ∼ G′′(ω) ∼ ωm

δ =
mπ

2
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Molecular Theories of Linear Viscoelasticity
APPLICATIONS OF THE ROUSE MODEL

1) UNENTANGLED MELTS
The Rouse Model correctly describes the full viscoelastic character of

short polymers. However, there is another complication at low molecular
weights because the monomeric friction coefficient depends on chain length.
This is reflected in the glass transition temperature.

Tg = Tg∞ −
K

Mn

(D-2)

This is understood as a chain end effect — chain ends have more free
volume vf than segments in the middle of the chain.

vf = vf∞ +
C

Mn

The free volume theory of the glass transition relies on a constant amount
of free volume at Tg, so an increase in free volume lowers Tg. It also lowers
the monomeric friction coefficient and hence the viscosity via the Doolittle
equation.

ln η = ln A +
B(v − vf )

vf

(10-11)

2) ENTANGLED MELTS

• The Rouse model describes the short time (or high frequency) relax-
ation of high molecular weight polymers.

• The molecular theory for terminal relaxation of high molecular weight
polymers, REPTATION, is simply Rouse motion of a chain confined in
a tube.
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Chain End Effects
THE GLASS TRANSITION

Chain Ends ∼ 1

Mn

Tg = Tg∞ −
K

Mn

(D-2)

Figure 3: Glass Transition Temperature of Low Molecular Weight Polybuta-
diene.
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Chain End Effects
SPECIFIC VOLUME

1

ρ
=

1

ρ∞
+

C

Mn

Figure 4: Density of Low Molecular Weight Polybutadiene.
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Chain End Effects
KINEMATIC VISCOSITY

ν ≡ η

ρ
units Stokes =

cm2

s

Figure 5: Isothermal Kinematic Viscosity of Low Molecular Weight Polybu-
tadiene.
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Chain End Effects
CORRECTED KINEMATIC VISCOSITY

Figure 6: Kinematic Viscosity at Constant Friction Coefficient for Low
Molecular Weight Polybutadiene.
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