Start-Up and Cessation of Steady Shear START-UP

Sample is initially in an equilibrium state. Shear at constant strain rate $\dot{\gamma}$. Stress growth coefficient:

$$\eta^{+}(t) \equiv \frac{\sigma(t)}{\dot{\gamma}} \tag{2-84}$$

Boltzmann Superposition:

$$\sigma(t) = \int_{-\infty}^{t} G(t - t')\dot{\gamma}dt' = \int_{0}^{t} G(t - t')\dot{\gamma}dt'$$
(2-8)

s = t - t' then ds = -dt', $t' = 0 \Rightarrow s = t$, and $t' = t \Rightarrow s = 0$

 $\eta^+(t) = \int_0^t G(s)ds$ (2-85)

Figure 1: Start-Up of Steady Shear for a 7.55 % polybutadiene solution.

Time (s)

Start-Up and Cessation of Steady Shear STRESS RELAXATION AFTER SHEARING

Stress Decay Coefficient:

$$\eta^{-}(t) \equiv \frac{\sigma(t)}{\dot{\gamma}} \tag{2-88}$$

Boltzmann Superposition:

$$\sigma(t) = \int_{-\infty}^{t} G(t - t')\dot{\gamma}dt'$$
(2-8)

For t' < 0, $\dot{\gamma}$ is constant, while for t' > 0, $\dot{\gamma} = 0$

$$\sigma(t) = \int_{-\infty}^{0} G(t - t') \dot{\gamma} dt'$$

s = t - t' then ds = -dt', $t' = -\infty \Rightarrow s = \infty$, and $t' = 0 \Rightarrow s = t$

Figure 2: Stress Relaxation after Cessation of Steady Shear for Polyethylene.