MOLECULAR WEIGHT

"Drop the idea of large molecules. Organic molecules with a molecular weight higher than 5000 do not exist." —Advice given to Hermann Staudinger*

MOLECULAR WEIGHT

WHY IS IT IMPORTANT ?

Molecular Weight - Some Initial Observations

How does the molecular weight of a high polymer differ from that of a low-molecular-weight substance ?

But for most polymers there is a Distribution of Chain Lengths

We must therefore define an Average Degree of Polymerization (\overline{DP})

The average number of structural units in the polymer chain

And an _____ Average Molecular Weight (M)

The average degree of polymerization times the molecular weight of the structural unit, M_0

MOLECULAR WEIGHT

METHODS FOR THE DETERMINATION OF MOLECULAR WEIGHT

END GROUP ANALYSIS	$\overline{\mathbf{M}}_{\mathbf{n}}$
OSMOTIC PRESSURE	$\overline{\mathbf{M}}_{\mathbf{n}}$
OTHER COLLIGATIVE	M _n
PROPERTY MEASUREMENTS	$\overline{\mathbf{M}}$
	$\overline{\mathbf{M}}_{\mathbf{W}}$
ULTRA - CENTRIFUGATION	w,z
SOLUTION VISCOSITY	$\overline{\mathbf{M}}_{\mathbf{v}} \sim \overline{\mathbf{M}}_{\mathbf{w}}$
GPC	Complete
	distribution

OSMOTIC PRESSURE

A SCHEMATIC OF A LABORATORY SCALE OSMOMETER

THE IDEA OF VIRIAL EQUATIONS

RELATIONSHIP TO MOLECULAR WEIGHT

$$PV = nRT$$

$$P \frac{V}{n} = RT$$

$$\frac{n}{V} = \frac{\# \text{ moles}}{\text{volume}} = \frac{w}{M} \frac{1}{V} = \frac{c}{M}$$

HENCE
$$\frac{1}{c} = \frac{RT}{M}$$

NOW CONSIDER AN IDEAL SOLUTION

Graph of /c versus c for polyisobutylene in chlorobenzene.

DERIVATION OF A VIRIAL EQUATION FROM THE FLORY - HUGGINS EQUATION

Osmotic pressure can Be related to the Chemical potential

$$\frac{\mu_{s} - \mu_{s}^{0}}{RT} = \ln_{s} + \left(1 - \frac{1}{\overline{M}_{n}}\right)_{p} + \frac{2}{p}$$
$$= -\frac{RT}{V_{s}} \left[\ln_{s} + \frac{1}{p}\left(1 - \frac{1}{\overline{M}_{n}}\right) + \frac{2}{p}\right]$$

Expanding the ln term

$$\ln_{s} = \ln (1 - p) = -p - \frac{p}{2} - \frac{p}{3} - \dots$$

We obtain

$$= \frac{RT}{V_s} \left[\frac{p}{\overline{M}_n} + \frac{p}{p} \left(\frac{1}{2} - \right) + \frac{3}{3} + \dots \right]$$

LIGHT SCATTERING

Looks fiendishly difficult because Of all the equations

Crucial point:

We will end up with a virial equation, Just as in our treatment of osmotic Pressure

THE EXPERIMENT

THE ORIGIN OF LIGHT SCATTERING

SCATTERING FROM A GAS

